THE E-STORY NEVER ENDS
- 作者: Metelev V.G1, Bogdanov A.A1,2,3
-
隶属关系:
- Lomonosov Moscow State University
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- 期: 卷 90, 编号 11 (2025)
- 页面: 1657-1669
- 栏目: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362445
- DOI: https://doi.org/10.7868/S3034529425110089
- ID: 362445
如何引用文章
详细
作者简介
V. Metelev
Lomonosov Moscow State University119991 Moscow, Russia
A. Bogdanov
Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
Email: bogdanov@belozersky.msu.ru
119991 Moscow, Russia; 119992 Moscow, Russia; 117997 Moscow, Russia
参考
- Voorhees, R. M., and Ramakrishnan, V. (2013) Structural basis of the translational elongation cycle, Annu. Rev. Biochem., 82, 203-236, https://doi.org/10.1146/annurev-biochem-113009-092313.
- Nierhaus, K. H. (1990) The allosteric 3-Site model for the ribosomal elongation cycle features and future, Biochemistry, 29, 4997-5008, https://doi.org/10.1021/bi00473a001.
- Semenkov, Y. P., Rodnina, M. V., and Wintermeyer, W. (1996) The “allosteric three-site model” of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli, Proc. Natl. Acad. Sci. USA, 93, 12183-12188, https://doi.org/10.1073/pnas.93.22.12183.
- Wilson, D. N., and Nierhaus, K. H. (2006) The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis, Cell. Mol. Life Sci., 63, 2725-2737, https://doi.org/10.1007/s00018-006-6125-4.
- Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science, 289, 905-920, https://doi.org/10.1126/science.289.5481.905.
- Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., and Yonath, A. (2000) Structure of functionally activated small ribosomal subunit at 3.3 Å resolution, Cell, 102, 615-623, https://doi.org/10.1016/S0092-8674(00)00084-2.
- Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000) Structure of the 30S ribosomal subunit, Nature, 407, 327-339, https://doi.org/10.1038/35030006.
- Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H., and Noller, H. F. (2001) Crystal structure of the ribosome at 5.5 Å resolution, Science, 292, 883-896, https://doi.org/10.1126/science.1060089.
- Frank, J. (2017) Time-resolved cryo-electron microscopy: recent progress, J. Struct. Biol., 200, 303-306, https://doi.org/10.1016/j.jsb.2017.06.005.
- Frank, J. (2018) New opportunities created by single-particle cryo-EM: the mapping of conformational space, Biochemistry, 57, 888, https://doi.org/10.1021/acs.biochem.8b00064.
- Jobe, A., Liu, Z., Gutierrez-Vargas, C., and Frank, J. (2019) New insights into ribosome structure and function, Cold Spring Harb. Perspect. Biol., 11, a032615, https://doi.org/10.1101/cshperspect.a032615.
- Flis, J., Holm, M., Rundlet, E.J., Loerke, J., Hilal, T., Dabrowski, M., Burger, J., Mielke, T., Blanchard, S. C., Spahn, C. M. T., and Budkevich, T. V. (2018) tRNA translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis, Cell Rep., 25, 2676-2688, https://doi.org/10.1016/j.celrep.2018.11.040.
- Nishima, W., Girodat, D., Holm, M., Rundlet, E. J., Alejo, J. L., Fischer, K., Blanchard, S. C., and Sanbonmatsu, K. Y. (2022) Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting, Nucleic Acids Res., 50, 8302-8320, https://doi.org/10.1093/nar/gkac597.
- Lodmell, J. S., and Dahlberg, A. E. (1997) A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA, Science, 277, 1262-1267, https://doi.org/10.1126/science.277.5330.1262.
- Dorner, S., Brunelle, J. L., Sharma, D., and Green, R. (2006) The hybrid state of tRNA binding is an authentic translation elongation intermediate, Nat. Struct. Mol. Biol., 13, 234-241, https://doi.org/10.1038/nsmb1060.
- Noller, H. F., Lancaster, L., Mohan, S., and Zhou, J. (2017) Ribosome structural dynamics in translocation: yet another functional role for ribosomal RNA, Quart. Rev. Biophys., 50, e12, https://doi.org/10.1017/S0033583517000117.
- Korostelev, A. A. (2022) The structural dynamics of translation, Annu. Rev. Biochem., 91, 245-267, https://doi.org/10.1146/annurev-biochem-071921-122857.
- Lindahl, L. (2024) Ribosome structural changes dynamically affect ribosome function, Int. J. Mol. Sci., 25, 11186, https://doi.org/10.3390/ijms252011186.
- Hassan, A., Byju, S., Freitas, F. C., Roc, C., Pender, N., Nguyen, K., Kimbrough, E. M., Mattingly, J. M., Gonzalez, R. L. Jr., Oliveira, R. J., Dunham, C. M., and Whitford, P. C. (2023) Ratchet, swivel, tilt and roll: a complete description of subunit rotation in the ribosome, Nucleic Acids Res., 51, 919-934, https://doi.org/10.1093/nar/gkac1211.
- Gao, Y. G., Selmer, M., Dunham, C. M., Weixlbaumer, A., Kelley, A. C., and Ramakrishnan, V. (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state, Science, 30, 694-699, https://doi.org/10.1126/science.1179709.
- Seely, S. M., Parajuli, N. P., De Tarafder, A., Ge, X., Sanyal, S., and Gagnon, M. G. (2023) Molecular basis of the pleiotropic effects by the antibiotic amikacin on the ribosome, Nat. Commun., 14, 4666-4666, https://doi.org/10.1038/s41467-023-40416-5.
- Rundlet, E. J., Holm, M., Schacherl, M., Natchiar, S. K., Altman, R. B., Spahn, C. M. T., Myasnikov, A. G., and Blanchard, S. C. (2021) Structural basis of early translocation events on the ribosome, Nature, 595, 741-745, https://doi.org/10.1038/s41586-021-03713-x.
- Mattingly, J. M., Nguyen, H. A., Roy, B., Fredrick, K., and Dunham, C. M. (2024) Structural analysis of noncanonical translation initiation complexes, J. Biol. Chem., 300, 107743, https://doi.org/10.1016/j.jbc.2024.107743.
- Mohan, S., and Noller, H. F. (2017) Recuring RNA structural motifs underlie the mechanics of L1 stalk movement, Nat. Commun., 8, 14285, https://doi.org/10.1038/ncomms14285.
- Lehmann, J., Jossinet, F., and Gautheret, D. (2013) A universal RNA structural motif docking the elbow of tRNA in the ribosome, RNAse P and T-box leaders, Nucleic Acids Res., 41, 5494-5502, https://doi.org/10.1093/nar/gkt219.
- Baulin, E., Metelev, V., and Bogdanov, A. (2020) Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA-protein complexes, Nucleic Acids Res., 48, 8675-8685, https://doi.org/10.1093/nar/gkaa610.
- Metelev, V. G., Baulin, E. F., and Bogdanov, A. A. (2023) Multiple non-canonical base-stacking interactions as one of the major determinants of RNA tertiary structure organization, Biochemistry (Moscow), 88, 792-800, https://doi.org/10.1134/S000629792306007X.
- Metelev, V. G., Baulin, E. F., and Bogdanov, A. A. (2024) Role of non-canonical stacking interactions of heterocyclic RNA bases in ribosome function, Biochemistry (Moscow), 89, 2252-2262, https://doi.10.1134/S0006297924120137.
- Carbone, C. E., Loveland, A. B., Gamper Jr., H. B., Hou, Y. M., Demo, G., and Korostelev, A. A. (2021) Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP, Nat Commun., 12, 7236-7236, https://doi.org/10.1038/s41467-021-27415-0.
- Tourigny, D. S., Fernández, I. S., Kelley, A. C., and Ramakrishnan, V. (2013) Elongation factor G bound to the ribosome in an intermediate state of translocation, Science, 28, 1235490, https://doi.org/10.1126/science.1235490.
- Lill, R., Lepier, A., Schwagele, F., Sprinzl, M., Vogt, H., and Wintermeyer, W. (1988) Specific recognition of the3′-terminal adenosine of tRNAPhe in the exit site of Escherichia coli ribosomes, J. Mol. Biol., 203, 699-705, https://doi.org/10.1016/0022-2836(88)90203-3.
- Moazed, D., and Noller, H. F. (1989) Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites, Cell, 19, 585-597, https://doi.org/10.1016/0092-8674(89)90128-1.
- Lill, R., Robertson, J. M., and Wintermeyer, W. (1989) Binding of the 3′ terminus of tRNA to 23S RNA in the ribosomal exit site actively promotes translocation, EMBO J., 8, 3933-3938, https://doi.org/10.1002/j.1460-2075.1989.tb08574.x.
- Bocchetta, M., Xiong, L., Shah, S., and Mankin, A. S. (2001) Interactions between 23S rRNA and tRNA in the ribosomal E site, RNA, 7, 54-63, https://doi.org/10.1017/s1355838201001650.
- Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2003) Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit, RNA, 9, 1345-1352, https://doi.org/10.1261/rna.5120503.
- Koch, M., Clementi, N., Rusca, N., Vögele, P., Erlacher, M., and Polacek, N. (2015) The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis, RNA Biol., 12, 70-81, https://doi.org/10.1080/15476286.2015.1017218.
- Sergiev, P. V., Lesnyak, D. V., Kiparisov, S. V., Burakovsky, D. E., Leonov, A. A., Bogdanov, A. A., Brimacombe, R., and Dontsova, O. A. (2005) Function of the ribosomal E-site: a mutagenesis study, Nucleic Acids Res., 33, 6048-6056, https://doi.org/10.1093/nar/gki910.
- Watson, Z. L., Ward, F. R., Méheust, R., Ad, O., Schepartz, A., Banfield, J. F., and Cate, J. H. (2020) Structure of the bacterial ribosome at 2 Å resolution, Elife, 9, e60482, https://doi.org/10.7554/eLife.60482.
- Wilson, D. N. (2014) Ribosome-targeting antibiotics and bacterial resistance mechanisms, Nat. Rev. Microbiol., 12, 35-48, https://doi.org/10.1038/nrmicro3155
- Dmitriev, S. E., Vladimirov, D. O., and Lashkevich, K. A. (2020) A quick guide to small-molecule inhibitors of eukaryotic protein synthesis, Biochemistry (Moscow), 85, 1389-1421, 10.1134/S0006297920110097' target='_blank'>https://doi: 10.1134/S0006297920110097.
- Safdari, H. A., Morici, M., Sanchez-Castro, A., Dallapè, A., Paternoga, H., Giuliodori, A. M., Fabbretti, A., Milón, P., and Wilson, D. N. (2025) The translation inhibitors kasugamycin, edeine and GE81112 target distinct steps during 30S initiation complex formation, Nat. Commun., 16, 2470, https://doi.org/10.1038/s41467-025-57731-8.
- Polikanov, Y. S., Osterman, I. A., Szal, T., Tashlitsky, V. N., Serebryakova, M. V., Kusochek, P., Bulkley, D., Malanicheva, I. A., Efimenko, T. A., Efremenkova, O. V., Konevega, A. L., Shaw, K. J., Bogdanov, A. A., Rodnina, M. V., Dontsova, O. A., Mankin, A. S., Steitz, T. A., and Sergiev, P. V. (2014) Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome, Mol. Cell, 56, 531-540, https://doi.org/10.1016/j.molcel.2014.09.020.
- Maksimova, E. M., Vinogradova, D. S., Osterman, I. A., Kasatsky, P. S., Nikonov, O. S., Milón, P., Dontsova, O. A., Sergiev, P. V., Paleskava, A., and Konevega, A. L. (2021) Multifaceted mechanism of amicoumacin A inhibition of bacterial translation front, Microbiol., 12, 8857, https://doi.org/10.3389/fmicb.2021.618857.
- Prokhorova, I. V., Akulich, K. A., Makeeva, D. S., Osterman, I. A., Skvortsov, D. A., Sergiev, P. V., Dontsova, O. A., Yusupova, G., Yusupov, M. M., and Dmitriev, S. E. (2016) Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome, Sci Rep., 6, 27720, https://doi.org/10.1038/srep27720.
- Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., and Liu, J. O. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin, Nat Chem Biol., 6, 209-217, https://doi.org/10.1038/nchembio.304.
- Zgadzay, Y., Kolosova, O., Stetsenko, A., Wu, C., Bruchlen, D., Usachev, K., Validov, S., Jenner, L., Rogachev, A., Yusupova, G., Sachs, M. S., Guskov, A., and Yusupov, M. (2022) E-site drug specificity of the human pathogen ribosome, Sci. Adv., 8, eabn1062, https://doi.org/10.1126/sciadv.abn1062.
- Shen, L. D., Su, Z. M., Yang, K. L., Wu, C., Becker, T., Bell-Pedersen, D., Zhang, J. J., and Sachs, M. S. (2021) Structure of the translating Neurospora ribosome arrested by cycloheximide, Proc. Natl. Acad. Sci. USA, 118, e2111862118, https://doi.org/10.1073/pnas.2111862118.
- Goldstein, M., Wang, Y., Byju, S., Mohanty, U., and Whitford, P. S. (2025) Characterization of a potential antibiotic target site on the ribosome, bioRxiv, https://doi.org/10.1101/2025.05.02.651724.
- Wright, G., Kaur, M., Travin, D., Berger, M., Jangra, M., Morici, M., Safdari, H. A., Klepacki, D., Wang, W., Cook, M., Chou, S., Guitor, A., Koteva, K., Xu, M., Ejim, L., Macneil, L., Vázquez-Laslop, N., Mankin, A., and Wilson, D. (2025) A natural depsipeptide antibiotic that targets the E site of the bacteria ribosome, Res. Sq., https://doi.org/10.21203/rs.3.rs-6925047/v1.
- Golubev, A. A., Validov, Sh. Z., Usachev, K. S., and Yusupov, M. M. (2019) Elongation factor P: new mechanisms of function and an evolutionary diversity of translation regulation, Mol. Biol., 53, 501-512, https://doi.org/10.1134/S0026893319040034.
- Blaha, G. R., Stanley, R. E., and Steitz, T. A. (2009) Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome, Science, 325, 966-970, https://doi.org/10.1126/science.1175800.
- Wiechert, F., Unbehaun, A., Sprink, Th., Seibel, H., Bürger, J., Loerke, J., Mielke, Th., Diebolder, C., Schacherl, M., and Spahn, C. (2025) Visualizing the modification landscape of the human 60S ribosomal subunit at close to atomic resolution, Nucleic Acids Res., 53, gkae1191, https://doi.org/10.1093/nar/gkae1191.
- Li, L., Rybak, M. Y., Lin, J., and Gagnon, M. G. (2024) The ribosome termination complex remodels release factor RF3 and ejects GDP, Nat. Struct. Mol. Biol., 31, 1909-1920, https://doi.org/10.1038/s41594-024-01360-0.
- Loveland, A. B., Koh, C. S., Ganesan, R., Jacobson, A., and Korostelev, A. A. (2024) Structural mechanism of angiogenin activation by the ribosome, Nature, 630, 769-776, https://doi.org/10.1038/s41586-024-07508-8.
- Simsek, D., Tiu, D. C., Flynn, R. A., Byeon, G. W., Leppek, K., Xu, A. F., Chang, H.Y., and Barna, M. (2017) The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity, Cell, 169, 1051-1065.e18, https://doi.org/10.1016/j.cell.2017.05.022.
- Irvin, J. D., and Hardesty, B. (1972) Binding of aminoacyl transfer ribonucleic acid synthetases to ribosomes from rabbit reticulocytes, Biochemistry, 11, 1915-1920, https://doi.org/10.1021/bi00760a028.
- Raina, M., Elgamal, S., Santangelo, T. J., and Ibba, M. (2012) Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis, FEBS Lett., 586, 2232-2238, https://doi.org/10.1016/j.febslet.2012.05.039.
- Godinic-Mikulcic, V., Jaric, J., Greber, B. J., Franke, V., Hodnik, V., Anderluh, G., Ban, N., and Weygand-Durasevic, I. (2014) Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs, Nucleic Acids Res., 42, 5191-5201, https://doi.org/10.1093/nar/gku164.
- Mleczko, A. M., Celichowski, P., and Bakowska-Zywicka, K. (2018) Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases, Biochim. Biophys. Acta, 1862, 647-656, https://doi.org/10.1016/j.bbagrm.2018.06.001.
- Gómez Ramos, L. M., Smeekens, J. M., Kovacs, N. A., Bowman, J. C., Wartell, M., Wu, R., and Williams, L. D. (2016) Yeast rRNA expansion segments: folding and function, J. Mol. Biol., 428, 4048-4059, https://doi.org/10.1016/j.jmb.2016.08.008.
- Ibba, M., and Soll, D. (2000) Aminoacyl-tRNA synthesis, Annu. Rev. Biochem., 69, 617-650, https://doi.org/10.1146/annurev.biochem.69.1.617.
补充文件

