METHODOLOGICAL TOOLBOX FOR DETECTION AND RESEARCH OF MICROPEPTIDES: FROM GENOME TO FUNCTION
- Autores: Lavrov A.I1,2, Shepelev N.M1,3, Dontsova O.A1,3, Rubtsova M.P1,3
-
Afiliações:
- Lomonosov Moscow State University
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 90, Nº 11 (2025)
- Páginas: 1621-1637
- Seção: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362443
- DOI: https://doi.org/10.7868/S3034529425110067
- ID: 362443
Citar
Resumo
Palavras-chave
Sobre autores
A. Lavrov
Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University119991 Moscow, Russia; 119992 Moscow, Russia
N. Shepelev
Lomonosov Moscow State University; Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences119991 Moscow, Russia; 117997 Moscow, Russia
O. Dontsova
Lomonosov Moscow State University; Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences119991 Moscow, Russia; 117997 Moscow, Russia
M. Rubtsova
Lomonosov Moscow State University; Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: mprubtsova@gmail.com
Correspondence address 119991 Moscow, Russia; 117997 Moscow, Russia
Bibliografia
- Basrai, M. A., Hieter, P., and Boeke, J. D. (1997) Small open reading frames: beautiful needles in the haystack, Genome Res., 7, 768-771, https://doi.org/10.1101/gr.7.8.768.
- Harrison, P. M. (2002) A question of size: the eukaryotic proteome and the problems in defining it, Nucleic Acids Res., 30, 1083-1090, https://doi.org/10.1093/nar/30.5.1083.
- Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S., and Weissman, J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, 324, 218-223, https://doi.org/10.1126/science.1168978.
- Chong, C., Müller, M., Pak, H., Harnett, D., Huber, F., Grun, D., Leleu, M., Auger, A., Arnaud, M., Stevenson, B. J., Michaux, J., Bilic, I., Hirsekorn, A., Calviello, L., Simó-Riudalbas, L., Planet, E., Lubiński, J., Bryśkiewicz, M., Wiznerowicz, M., Xenarios, I., Zhang, L., Trono, D., Harari, A., Ohler, U., Coukos, G., and Bassani-Sternberg, M. (2020) Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes, Nat. Commun., 11, 1293, https://doi.org/10.1038/s41467-020-14968-9.
- Slavoff, S. A., Mitchell, A. J., Schwaid, A. G., Cabili, M. N., Ma, J., Levin, J. Z., Karger, A. D., Budnik, B. A., Rinn, J. L., and Saghatelian, A. (2013) Peptidomic discovery of short open reading frame-encoded peptides in human cells, Nat. Chem. Biol., 9, 59-64, https://doi.org/10.1038/nchembio.1120.
- Sandmann, C.-L., Schulz, J. F., Ruiz-Orera, J., Kirchner, M., Ziehm, M., Adami, E., Marczenke, M., Christ, A., Liebe, N., Greiner, J., Schoenenberger, A., Muecke, M. B., Liang, N., Moritz, R. L., Sun, Z., Deutsch, E. W., Gotthardt, M., Mudge, J. M., Prensner, J. R., Willnow, T. E., Mertins, P., Van Heesch, S., and Hubner, N. (2023) Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames, Mol. Cell, 83, 994-1011.e18, https://doi.org/10.1016/j.molcel.2023.01.023.
- Cao, X., Sun, S., and Xing, J. (2024) A massive proteogenomic screen identifies thousands of novel peptides from the human “dark” proteome, Mol. Cell. Proteomics, 23, 100719, https://doi.org/10.1016/j.mcpro.2024.100719.
- Pauli, A., Norris, M. L., Valen, E., Chew, G.-L., Gagnon, J. A., Zimmerman, S., Mitchell, A., Ma, J., Dubrulle, J., Reyon, D., Tsai, S. Q., Joung, J. K., Saghatelian, A., and Schier, A. F. (2014) Toddler: an embryonic signal that promotes cell movement via apelin receptors, Science, 343, 1248636, https://doi.org/10.1126/science.1248636.
- Kondo, T., Hashimoto, Y., Kato, K., Inagaki, S., Hayashi, S., and Kageyama, Y. (2007) Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA, Nat. Cell. Biol., 9, 660-665, https://doi.org/10.1038/ncb1595.
- Chugunova, A., Loseva, E., Mazin, P., Mitina, A., Navalayeu, T., Bilan, D., Vishnyakova, P., Marey, M., Golovina, A., Serebryakova, M., Pletnev, P., Rubtsova, M., Mair, W., Vanyushkina, A., Khaitovich, P., Belousov, V., Vysokikh, M., Sergiev, P., and Dontsova, O. (2019) LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism, Proc. Natl. Acad. Sci. USA, 116, 4940-4945, https://doi.org/10.1073/pnas.1809105116.
- Matsumoto, A., Pasut, A., Matsumoto, M., Yamashita, R., Fung, J., Monteleone, E., Saghatelian, A., Nakayama, K. I., Clohessy, J. G., and Pandolfi, P. P. (2017) mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide, Nature, 541, 228-232, https://doi.org/10.1038/nature21034.
- Dong, X., Zhang, K., Xun, C., Chu, T., Liang, S., Zeng, Y., and Liu, Z. (2023) Small Open reading frame-encoded micro-peptides: an emerging protein world, Int. J. Mol. Sci., 24, 10562, https://doi.org/10.3390/ijms241310562.
- Couso, J.-P., and Patraquim, P. (2017) Classification and function of small open reading frames, Nat. Rev. Mol. Cell Biol., 18, 575-589, https://doi.org/10.1038/nrm.2017.58.
- Xie, L., Bowman, M. E., Louie, G. V., Zhang, C., Ardejani, M. S., Huang, X., Chu, Q., Donaldson, C. J., Vaughan, J. M., Shan, H., Powers, E. T., Kelly, J. W., Lyumkis, D., Noel, J. P., and Saghatelian, A. (2023) Biochemistry and protein interactions of the CYREN microprotein, Biochemistry, 62, 3050-3060, https://doi.org/10.1021/acs.biochem.3c00397.
- Zhu, K.-G., Yang, J., Zhu, Y., Zhu, Q., Pan, W., Deng, S., He, Y., Zuo, D., Wang, P., Han, Y., and Zhang, H.-Y. (2023) The microprotein encoded by exosomal lncAKR1C2 promotes gastric cancer lymph node metastasis by regulating fatty acid metabolism, Cell Death Dis., 14, 708, https://doi.org/10.1038/s41419-023-06220-1.
- Zheng, W., Guo, Y., Zhang, G., Bai, J., Song, Y., Song, X., Zhu, Q., Bao, X., Wu, G., and Zhang, C. (2023) Peptide encoded by lncRNA BVES-AS1 promotes cell viability, migration, and invasion in colorectal cancer cells via the SRC/mTOR signaling pathway, PLoS One, 18, e0287133, https://doi.org/10.1371/journal.pone.0287133.
- Guo, B., Zhai, D., Cabezas, E., Welsh, K., Nouraini, S., Satterthwait, A. C., and Reed, J. C. (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation, Nature, 423, 456-461, https://doi.org/10.1038/nature01627.
- Makarewich, C. A., Munir, A. Z., Schiattarella, G. G., Bezprozvannaya, S., Raguimova, O. N., Cho, E. E., Vidal, A. H., Robia, S. L., Bassel-Duby, R., and Olson, E. N. (2018) The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy, Elife, 7, e38319, https://doi.org/10.7554/eLife.38319.
- Reddy, U. V., Weber, D. K., Wang, S., Larsen, E. K., Gopinath, T., De Simone, A., Robia, S., and Veglia, G. (2022) A kink in DWORF helical structure controls the activation of the sarcoplasmic reticulum Ca2+-ATPase, Structure, 30, 360-370, https://doi.org/10.1016/j.str.2021.11.003.
- Tonkin, J., and Rosenthal, N. (2015) One small step for muscle: a new micropeptide regulates performance, Cell Metab., 21, 515-516, https://doi.org/10.1016/j.cmet.2015.03.013.
- Anderson, D. M., Makarewich, C. A., Anderson, K. M., Shelton, J. M., Bezprozvannaya, S., Bassel-Duby, R., and Olson, E. N. (2016) Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides, Sci. Signal., 9, aaj1460, https://doi.org/10.1126/scisignal.aaj1460.
- Frith, M. C., Forrest, A. R., Nourbakhsh, E., Pang, K. C., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., Bailey, T. L., and Grimmond, S. M. (2006) The abundance of short proteins in the mammalian proteome, PLoS Genet., 2, e52, https://doi.org/10.1371/journal.pgen.0020052.
- Kute, P. M., Soukarieh, O., Tjeldnes, H., Trégouët, D.-A., and Valen, E. (2022) Small open reading frames, how to find them and determine their function, Front. Genet., 12, 796060, https://doi.org/10.3389/fgene.2021.796060.
- Hurst, L. (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution, Trends Genet., 18, 486-487, https://doi.org/10.1016/s0168-9525(02)02722-1.
- Lin, M. F., Jungreis, I., and Kellis, M. (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions, Bioinformatics, 27, i275-i282, https://doi.org/10.1093/bioinformatics/btr209.
- Mackowiak, S. D., Zauber, H., Bielow, C., Thiel, D., Kutz, K., Calviello, L., Mastrobuoni, G., Rajewsky, N., Kempa, S., Selbach, M., and Obermayer, B. (2015) Extensive identification and analysis of conserved small ORFs in animals, Genome Biol., 16, 179, https://doi.org/10.1186/s13059-015-0742-x.
- Ladoukakis, E., Pereira, V., Magny, E. G., Eyre-Walker, A., and Couso, J. P. (2011) Hundreds of putatively functional small open reading frames in Drosophila, Genome Biol., 12, R118, https://doi.org/10.1186/gb-2011-12-11-r118.
- Badger, J. H., and Olsen, G. J. (1999) CRITICA: coding region identification tool invoking comparative analysis, Mol. Biol. Evol., 16, 512-524, https://doi.org/10.1093/oxfordjournals.molbev.a026133.
- Kong, L., Zhang, Y., Ye, Z.-Q., Liu, X.-Q., Zhao, S.-Q., Wei, L., and Gao, G. (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine, Nucleic Acids Res., 35, W345-W349, https://doi.org/10.1093/nar/gkm391.
- Chen, Z., Meng, J., Zhao, S., Yin, C., and Luan, Y. (2023) sORFPred: a method based on comprehensive features and ensemble learning to predict the sORFs in plant LncRNAs, Interdiscip. Sci. Comput. Life Sci., 15, 189-201, https://doi.org/10.1007/s12539-023-00552-4.
- Zhao, S., Meng, J., Kang, Q., and Luan, Y. (2022) Identifying LncRNA-encoded short peptides using optimized hybrid features and ensemble learning, Trans. Comput. Biol. and Bioinf., 19, 2873-2881, https://doi.org/10.1109/TCBB.2021.3104288.
- Raj, A., Wang, S. H., Shim, H., Harpak, A., Li, Y. I., Engelmann, B., Stephens, M., Gilad, Y., and Pritchard, J. K. (2016) Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling, Elife, 5, e13328, https://doi.org/10.7554/eLife.13328.
- Bazzini, A. A., Johnstone, T. G., Christiano, R., Mackowiak, S. D., Obermayer, B., Fleming, E. S., Vejnar, C. E., Lee, M. T., Rajewsky, N., Walther, T. C., and Giraldez, A. J. (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation, EMBO J., 33, 981-993, https://doi.org/10.1002/embj.201488411.
- Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., and Liu, J. O. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin, Nat. Chem. Biol., 6, 209-217, https://doi.org/10.1038/nchembio.304.
- Brar, G. A., and Weissman, J. S. (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis, Nat. Rev. Mol. Cell. Biol., 16, 651-664, https://doi.org/10.1038/nrm4069.
- Ingolia, N. T., Brar, G. A., Stern-Ginossar, N., Harris, M. S., Talhouarne, G. J. S., Jackson, S. E., Wills, M. R., and Weissman, J. S. (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes, Cell Rep., 8, 1365-1379, https://doi.org/10.1016/j.celrep.2014.07.045.
- Bartholomäus, A., Del Campo, C., and Ignatova, Z. (2016) Mapping the non-standardized biases of ribosome profiling, Biol. Chem., 397, 23-35, https://doi.org/10.1515/hsz-2015-0197.
- Martinez, T. F., Chu, Q., Donaldson, C., Tan, D., Shokhirev, M. N., and Saghatelian, A. (2020) Accurate annotation of human protein-coding small open reading frames, Nat. Chem. Biol., 16, 458-468, https://doi.org/10.1038/s41589-019-0425-0.
- Ingolia, N. T., Lareau, L. F., and Weissman, J. S. (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 147, 789-802, https://doi.org/10.1016/j.cell.2011.10.002.
- Fresno, M., Jiménez, A., and Vázquez, D. (1977) Inhibition of translation in eukaryotic systems by harringtonine, Eur. J. Biochem., 72, 323-330, https://doi.org/10.1111/j.1432-1033.1977.tb11256.x.
- Lee, S., Liu, B., Lee, S., Huang, S.-X., Shen, B., and Qian, S.-B. (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution, Proc. Natl. Acad. Sci. USA, 109, https://doi.org/10.1073/pnas.1207846109.
- Gao, X., Wan, J., Liu, B., Ma, M., Shen, B., and Qian, S.-B. (2015) Quantitative profiling of initiating ribosomes in vivo, Nat. Methods, 12, 147-153, https://doi.org/10.1038/nmeth.3208.
- Mudge, J. M., Ruiz-Orera, J., Prensner, J. R., Brunet, M. A., Calvet, F., Jungreis, I., Gonzalez, J. M., Magrane, M., Martinez, T. F., Schulz, J. F., Yang, Y. T., Albà, M. M., Aspden, J. L., Baranov, P. V., Bazzini, A. A., Bruford, E., Martin, M. J., Calviello, L., Carvunis, A.-R., Chen, J., Couso, J. P., Deutsch, E. W., Flicek, P., Frankish, A., Gerstein, M., Hubner, N., Ingolia, N. T., Kellis, M., Menschaert, G., Moritz, R. L., Ohler, U., Roucou, X., Saghatelian, A., Weissman, J. S., and Van Heesch, S. (2022) Standardized annotation of translated open reading frames, Nat. Biotechnol., 40, 994-999, https://doi.org/10.1038/s41587-022-01369-0.
- Spealman, P., Naik, A. W., May, G. E., Kuersten, S., Freeberg, L., Murphy, R. F., and McManus, J. (2018) Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data, Genome Res., 28, 214-222, https://doi.org/10.1101/gr.221507.117.
- Quaife, N. M., Chothani, S., Schulz, J. F., Lindberg, E. L., Vanezis, K., Adami, E., O’Fee, K., Greiner, J., Litviňuková, M., Van Heesch, S., Whiffin, N., Hubner, N., Schafer, S., Rackham, O., Cook, S. A., and Barton, P. J. R. (2023) LINC01013 is a determinant of fibroblast activation and encodes a novel fibroblast-activating micropeptide, J. Cardiovasc. Trans. Res., 16, 77-85, https://doi.org/10.1007/s12265-022-10288-z.
- Sun, L., Wang, W., Han, C., Huang, W., Sun, Y., Fang, K., Zeng, Z., Yang, Q., Pan, Q., Chen, T., Luo, X., and Chen, Y. (2021) The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation, Mol. Cell, 81, 4493-4508.e9, https://doi.org/10.1016/j.molcel.2021.08.033.
- Van Heesch, S., Witte, F., Schneider-Lunitz, V., Schulz, J. F., Adami, E., Faber, A. B., Kirchner, M., Maatz, H., Hubner, N., et al. (2019) The translational landscape of the human heart, Cell, 178, 242-260.e29, https://doi.org/10.1016/j.cell.2019.05.010.10.
- Wang, S., Tian, L., Liu, H., Li, X., Zhang, J., Chen, X., Jia, X., Zheng, X., Wu, S., Chen, Y., Yan, J., and Wu, L. (2020) Large-scale discovery of non-conventional peptides in maize and arabidopsis through an integrated peptidogenomic pipeline, Mol. Plant, 13, 1078-1093, https://doi.org/10.1016/j.molp.2020.05.012.
- Cardon, T., Hervé, F., Delcourt, V., Roucou, X., Salzet, M., Franck, J., and Fournier, I. (2020) Optimized sample preparation workflow for improved identification of ghost proteins, Anal. Chem., 92, 1122-1129, https://doi.org/10.1021/acs.analchem.9b04188.
- Ma, J., Ward, C. C., Jungreis, I., Slavoff, S. A., Schwaid, A. G., Neveu, J., Budnik, B. A., Kellis, M., and Saghatelian, A. (2014) Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue, J. Proteome Res., 13, 1757-1765, https://doi.org/10.1021/pr401280w.
- Ma, J., Diedrich, J. K., Jungreis, I., Donaldson, C., Vaughan, J., Kellis, M., Yates, J. R., and Saghatelian, A. (2016) Improved identification and analysis of small open reading frame encoded polypeptides, Anal. Chem., 88, 3967-3975, https://doi.org/10.1021/acs.analchem.6b00191.
- Cassidy, L., Helbig, A. O., Kaulich, P. T., Weidenbach, K., Schmitz, R. A., and Tholey, A. (2021) Multidimensional separation schemes enhance the identification and molecular characterization of low molecular weight proteomes and short open reading frame-encoded peptides in top-down proteomics, J. Proteomics, 230, 103988, https://doi.org/10.1016/j.jprot.2020.103988.
- Tran, J. C., and Doucette, A. A. (2008) Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation, Anal. Chem., 80, 1568-1573, https://doi.org/10.1021/ac702197w.
- Branca, R. M. M., Orre, L. M., Johansson, H. J., Granholm, V., Huss, M., Pérez-Bercoff, Å., Forshed, J., Käll, L., and Lehtiö, J. (2014) HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics, Nat. Methods, 11, 59-62, https://doi.org/10.1038/nmeth.2732.
- Nesvizhskii, A. I. (2014) Proteogenomics: concepts, applications and computational strategies, Nat. Methods, 11, 1114-1125, https://doi.org/10.1038/nmeth.3144.
- Fijalkowski, I., Peeters, M. K. R., and Van Damme, P. (2021) Small protein enrichment improves proteomics detection of sORF encoded polypeptides, Front. Genet., 12, 713400, https://doi.org/10.3389/fgene.2021.713400.
- Cassidy, L., Kaulich, P. T., and Tholey, A. (2023) Proteoforms expand the world of microproteins and short open reading frame-encoded peptides, iScience, 26, 106069, https://doi.org/10.1016/j.isci.2023.106069.
- Khitun, A., and Slavoff, S. A. (2019) Proteomic detection and validation of translated small open reading frames, Curr. Protoc. Chem. Biol., 11, e77, https://doi.org/10.1002/cpch.7.
- Slavoff, S. A., Heo, J., Budnik, B. A., Hanakahi, L. A., and Saghatelian, A. (2014) A human short open reading frame (sORF)-encoded polypeptide that stimulates DNA end joining, J. Biol. Chem., 289, 10950-10957, https://doi.org/10.1074/jbc.C113.533968.
- Ouspenskaia, T., Law, T., Clauser, K. R., Klaeger, S., Sarkizova, S., Aguet, F., Li, B., Christian, E., Knisbacher, B. A., Le, P. M., Hartigan, C. R., Keshishian, H., Apffel, A., Oliveira, G., Zhang, W., Chen, S., Chow, Y. T., Ji, Z., Jungreis, I., Shukla, S. A., Justesen, S., Bachireddy, P., Kellis, M., Getz, G., Hacohen, N., Keskin, D. B., Carr, S. A., Wu, C. J., and Regev, A. (2022) Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer, Nat. Biotechnol, 40, 209-217, https://doi.org/10.1038/s41587-021-01021-3.
- Wang, J. Y., and Doudna, J. A. (2023) CRISPR technology: a decade of genome editing is only the beginning, Science, 379, eadd8643, https://doi.org/10.1126/science.add8643.
- Shalem, O., Sanjana, N. E., and Zhang, F. (2015) High-throughput functional genomics using CRISPR-Cas9, Nat. Rev. Genet., 16, 299-311, https://doi.org/10.1038/nrg3899.
- Chen, J., Brunner, A.-D., Cogan, J. Z., Nuñez, J. K., Fields, A. P., Adamson, B., Itzhak, D. N., Li, J. Y., Mann, M., Leonetti, M. D., and Weissman, J. S. (2020) Pervasive functional translation of noncanonical human open reading frames, Science, 367, 1140-1146, https://doi.org/10.1126/science.aay0262.
- Prensner, J. R., Enache, O. M., Luria, V., Krug, K., Clauser, K. R., Dempster, J. M., Karger, A., Wang, L., Stumbraite, K., Wang, V. M., Botta, G., Lyons, N. J., Goodale, A., Kalani, Z., Fritchman, B., Brown, A., Alan, D., Green, T., Yang, X., Jaffe, J. D., Roth, J. A., Piccioni, F., Kirschner, M. W., Ji, Z., Root, D. E., and Golub, T. R. (2021) Noncanonical open reading frames encode functional proteins essential for cancer cell survival, Nat. Biotechnol., 39, 697-704, https://doi.org/10.1038/s41587-020-00806-2.
- Schlesinger, D., Dirks, C., Navarro, C., Lafranchi, L., Spinner, A., Raja, G. L., Mun-Sum Tong, G., Eirich, J., Martinez, T. F., and Elsässer, S. J. (2025) A large-scale sORF screen identifies putative microproteins involved in cancer cell fitness, iScience, 28, 111884, https://doi.org/10.1016/j.isci.2025.111884.
- Lafranchi, L., Spinner, A., Hornisch, M., Schlesinger, D., Luzon, C. N., Brinkenstråhle, L., Shao, R., Piazza, I., and Elsässer, S. J. (2024) Pooled overexpression screening identifies PIPPI as a novel microprotein involved in the ER stress response, bioRxiv, https://doi.org/10.1101/2024.12.08.627409.
- Delcourt, V., Brunelle, M., Roy, A. V., Jacques, J.-F., Salzet, M., Fournier, I., and Roucou, X. (2018) The protein coded by a short open reading frame, not by the annotated coding sequence, is the main gene product of the dual-coding gene MIEF1, Mol. Cell. Proteom., 17, 2402-2411, https://doi.org/10.1074/mcp.RA118.000593.
- Zhang, C., Zhou, B., Gu, F., Liu, H., Wu, H., Yao, F., Zheng, H., Fu, H., Chong, W., Cai, S., Huang, M., Ma, X., Guo, Z., Li, T., Deng, W., Zheng, M., Ji, Q., Zhao, Y., Ma, Y., Wang, Q.-E., Tang, T.-S., and Guo, C. (2022) Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation, Mol. Cell, 82, 1297-1312.e8, https://doi.org/10.1016/j.molcel.2022.01.020.
- Zhang, H., Liao, Z., Wang, W., Liu, Y., Zhu, H., Liang, H., Zhang, B., and Chen, X. (2023) A micropeptide JunBP regulated by TGF-β promotes hepatocellular carcinoma metastasis, Oncogene, 42, 113-123, https://doi.org/10.1038/s41388-022-02518-0.
- Guo, B., Wu, S., Zhu, X., Zhang, L., Deng, J., Li, F., Wang, Y., Zhang, S., Wu, R., Lu, J., and Zhou, Y. (2020) Micropeptide CIP 2A-BP encoded by LINC 00665 inhibits triple-negative breast cancer progression, EMBO J., 39, e102190, https://doi.org/10.15252/embj.2019102190.
- Huang, J.-Z., Chen, M., Chen, D., Gao, X.-C., Zhu, S., Huang, H., Hu, M., Zhu, H., and Yan, G.-R. (2017) A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth, Mol. Cell, 68, 171-184.e6, https://doi.org/10.1016/j.molcel.2017.09.015.
- Rocha, A. L., Pai, V., Perkins, G., Chang, T., Ma, J., De Souza, E. V., Chu, Q., Vaughan, J. M., Diedrich, J. K., Ellisman, M. H., and Saghatelian, A. (2024) An inner mitochondrial membrane microprotein from the SLC35A4 upstream ORF regulates cellular metabolism, J. Mol. Biol., 436, 168559, https://doi.org/10.1016/j.jmb.2024.168559.
- Konina, D., Sparber, P., Viakhireva, I., Filatova, A., and Skoblov, M. (2021) Investigation of LINC00493/SMIM26 gene suggests its dual functioning at mRNA and protein level, Int. J. Mol. Sci. Artic. J. Mol. Sci., 22, 8477, https://doi.org/10.3390/ijms22168477.
- Liang, X., Shen, W., Sun, H., Migawa, M. T., Vickers, T. A., and Crooke, S. T. (2016) Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames, Nat. Biotechnol., 34, 875-880, https://doi.org/10.1038/nbt.3589.
- Anderson, D. M., Anderson, K. M., Chang, C.-L., Makarewich, C. A., Nelson, B. R., McAnally, J. R., Kasaragod, P., Shelton, J. M., Liou, J., Bassel-Duby, R., and Olson, E. N. (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 160, 595-606, https://doi.org/10.1016/j.cell.2015.01.009.
- Ryskina, A. M., Kudriaeva, A. A., and Belogurov, A. A. (2024) Microproteins tracking: when size does really matter, Rev. Adv. Chem., 14, 305-319, https://doi.org/10.1134/S2634827624600324.
- Chu, Q., Martinez, T. F., Novak, S. W., Donaldson, C. J., Tan, D., Vaughan, J. M., Chang, T., Diedrich, J. K., Andrade, L., Kim, A., Zhang, T., Manor, U., and Saghatelian, A. (2019) Regulation of the ER stress response by a mitochondrial microprotein, Nat. Commun., 10, 12816, https://doi.org/10.1038/s41467-019-12816-z.
- Niu, L., Lou, F., Sun, Y., Sun, L., Cai, X., Liu, Z., Zhou, H., Wang, H., Wang, Z., Bai, J., Yin, Q., Zhang, J., Chen, L., Peng, D., Xu, Z., Gao, Y., Tang, S., Fan, L., and Wang, H. (2020) A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation, Sci. Adv., 6, eaaz2059, https://doi.org/10.1126/sciadv.aaz2059.
- Rathore, A., Chu, Q., Tan, D., Martinez, T. F., Donaldson, C. J., Diedrich, J. K., Yates, J. R., and Saghatelian, A. (2018) MIEF1 Microprotein Regulates Mitochondrial Translation, Biochemistry, 57, 5564-5575, https://doi.org/10.1021/acs.biochem.8b00726.
- Schägger, H. (2006) Tricine-SDS-PAGE, Nat. Protoc., 1, 16-22, https://doi.org/10.1038/nprot.2006.4.
- Stein, C. S., Jadiya, P., Zhang, X., McLendon, J. M., Abouassaly, G. M., Witmer, N. H., Anderson, E. J., Elrod, J. W., and Boudreau, R. L. (2018) Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency, Cell Rep., 23, 3710-3720.e8, https://doi.org/10.1016/j.celrep.2018.06.002.
- Okita, N., Higami, Y., Fukai, F., Kobayashi, M., Mitarai, M., Sekiya, T., and Sasaki, T. (2017) Modified Western blotting for insulin and other diabetes-associated peptide hormones, Sci. Rep., 7, 6949, https://doi.org/10.1038/s41598-017-04456-4.
- Huang, N., Li, F., Zhang, M., Zhou, H., Chen, Z., Ma, X., Yang, L., Wu, X., Zhong, J., Xiao, F., Yang, X., Zhao, K., Li, X., Xia, X., Liu, Z., Gao, S., and Zhang, N. (2021) An Upstream Open Reading Frame in Phosphatase and Tensin Homolog Encodes a Circuit Breaker of Lactate Metabolism, Cell Metab., 33, 128-144.e9, https://doi.org/10.1016/j.cmet.2020.12.008.
- Cabantous, S., Terwilliger, T. C., and Waldo, G. S. (2005) Protein tagging and detection with engineered selfassembling fragments of green fluorescent protein, Nat. Biotechnol., 23, 102-107, https://doi.org/10.1038/nbt1044.
- Kamiyama, D., Sekine, S., Barsi-Rhyne, B., Hu, J., Chen, B., Gilbert, L. A., Ishikawa, H., Leonetti, M. D., Marshall, W. F., Weissman, J. S., and Huang, B. (2016) Versatile protein tagging in cells with split fluorescent protein, Mol. Cell, 82, 2900-2911.e7, https://doi.org/10.1038/ncomms11046.
- Na, Z., Dai, X., Zheng, S.-J., Bryant, C. J., Loh, K. H., Su, H., Luo, Y., Buhagiar, A. F., Cao, X., Baserga, S. J., Chen, S., and Slavoff, S. A. (2022) Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID, Mol. Cell, 82, 2900-2911.e7, https://doi.org/10.1016/j.molcel.2022.06.035.
- Nguyen, T. M. T., Kim, J., Doan, T. T., Lee, M.-W., and Lee, M. (2020) APEX proximity labeling as a versatile tool for biological research, Biochemistry, 59, 260-269, https://doi.org/10.1021/acs.biochem.9b00791.
- Roux, K. J., Kim, D. I., Burke, B., and May, D. G. (2018) BioID: A Screen for Protein-Protein Interactions, Curr. Protoc. Protein Sci., 91, 19.23.1-19.23.15, https://doi.org/10.1002/cpps.51.
- Bosch, J. A., Chen, C., and Perrimon, N. (2021) Proximity-dependent labeling methods for proteomic profiling in living cells: an update, Wiley Interdiscip. Rev. Dev. Biol., 10, e392, https://doi.org/10.1002/wdev.392.
- Chu, Q., Rathore, A., Diedrich, J. K., Donaldson, C. J., Yates, J. R., and Saghatelian, A. (2017) Identification of microprotein-protein interactions via APEX tagging, Biochemistry, 56, 3299-3306, https://doi.org/10.1021/acs.biochem.7b00265.
- Singh, D. R., Dalton, M. P., Cho, E. E., Pribadi, M. P., Zak, T. J., Šeflová, J., Makarewich, C. A., Olson, E. N., and Robia, S. L. (2019) Newly discovered micropeptide regulators of SERCA form oligomers but bind to the pump as monomers, J. Mol. Biol., 431, 4429-4443, https://doi.org/10.1016/j.jmb.2019.07.037.
- Hu, Y., Cheng, K., He, L., Zhang, X., Jiang, B., Jiang, L., Li, C., Wang, G., Yang, Y., and Liu, M. (2021) NMR-based methods for protein analysis, Anal. Chem., 93, 1866-1879, https://doi.org/10.1021/acs.analchem.0c03830.
Arquivos suplementares

