METHODOLOGICAL TOOLBOX FOR DETECTION AND RESEARCH OF MICROPEPTIDES: FROM GENOME TO FUNCTION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Micropeptides encoded by small open reading frames (sORFs) are an emerging class of functional molecules that regulate key cellular processes. Their study is hampered by several methodological challenges, including their small size, low abundance, and the difficulty in generating specific antibodies. This review systematizes current approaches for the identification and functional characterization of micropeptides. We describe the main strategies for their discovery: bioinformatic algorithms, global translation analysis via ribosome profiling, direct detection by mass spectrometry-based proteomics, and phenotypic screenings. Additionally, methods for functional validation and the elucidation of their molecular mechanisms of action are reviewed, including genetic knockouts and affinity tagging for visualization and the study of protein-protein interactions. The review discusses the key challenges and future prospects of the field, emphasizing the importance of an integrated multi-omics approach for the comprehensive mapping of the micropeptidome.

Sobre autores

A. Lavrov

Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia; 119992 Moscow, Russia

N. Shepelev

Lomonosov Moscow State University; Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

119991 Moscow, Russia; 117997 Moscow, Russia

O. Dontsova

Lomonosov Moscow State University; Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

119991 Moscow, Russia; 117997 Moscow, Russia

M. Rubtsova

Lomonosov Moscow State University; Shennyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: mprubtsova@gmail.com
Correspondence address 119991 Moscow, Russia; 117997 Moscow, Russia

Bibliografia

  1. Basrai, M. A., Hieter, P., and Boeke, J. D. (1997) Small open reading frames: beautiful needles in the haystack, Genome Res., 7, 768-771, https://doi.org/10.1101/gr.7.8.768.
  2. Harrison, P. M. (2002) A question of size: the eukaryotic proteome and the problems in defining it, Nucleic Acids Res., 30, 1083-1090, https://doi.org/10.1093/nar/30.5.1083.
  3. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S., and Weissman, J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, 324, 218-223, https://doi.org/10.1126/science.1168978.
  4. Chong, C., Müller, M., Pak, H., Harnett, D., Huber, F., Grun, D., Leleu, M., Auger, A., Arnaud, M., Stevenson, B. J., Michaux, J., Bilic, I., Hirsekorn, A., Calviello, L., Simó-Riudalbas, L., Planet, E., Lubiński, J., Bryśkiewicz, M., Wiznerowicz, M., Xenarios, I., Zhang, L., Trono, D., Harari, A., Ohler, U., Coukos, G., and Bassani-Sternberg, M. (2020) Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes, Nat. Commun., 11, 1293, https://doi.org/10.1038/s41467-020-14968-9.
  5. Slavoff, S. A., Mitchell, A. J., Schwaid, A. G., Cabili, M. N., Ma, J., Levin, J. Z., Karger, A. D., Budnik, B. A., Rinn, J. L., and Saghatelian, A. (2013) Peptidomic discovery of short open reading frame-encoded peptides in human cells, Nat. Chem. Biol., 9, 59-64, https://doi.org/10.1038/nchembio.1120.
  6. Sandmann, C.-L., Schulz, J. F., Ruiz-Orera, J., Kirchner, M., Ziehm, M., Adami, E., Marczenke, M., Christ, A., Liebe, N., Greiner, J., Schoenenberger, A., Muecke, M. B., Liang, N., Moritz, R. L., Sun, Z., Deutsch, E. W., Gotthardt, M., Mudge, J. M., Prensner, J. R., Willnow, T. E., Mertins, P., Van Heesch, S., and Hubner, N. (2023) Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames, Mol. Cell, 83, 994-1011.e18, https://doi.org/10.1016/j.molcel.2023.01.023.
  7. Cao, X., Sun, S., and Xing, J. (2024) A massive proteogenomic screen identifies thousands of novel peptides from the human “dark” proteome, Mol. Cell. Proteomics, 23, 100719, https://doi.org/10.1016/j.mcpro.2024.100719.
  8. Pauli, A., Norris, M. L., Valen, E., Chew, G.-L., Gagnon, J. A., Zimmerman, S., Mitchell, A., Ma, J., Dubrulle, J., Reyon, D., Tsai, S. Q., Joung, J. K., Saghatelian, A., and Schier, A. F. (2014) Toddler: an embryonic signal that promotes cell movement via apelin receptors, Science, 343, 1248636, https://doi.org/10.1126/science.1248636.
  9. Kondo, T., Hashimoto, Y., Kato, K., Inagaki, S., Hayashi, S., and Kageyama, Y. (2007) Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA, Nat. Cell. Biol., 9, 660-665, https://doi.org/10.1038/ncb1595.
  10. Chugunova, A., Loseva, E., Mazin, P., Mitina, A., Navalayeu, T., Bilan, D., Vishnyakova, P., Marey, M., Golovina, A., Serebryakova, M., Pletnev, P., Rubtsova, M., Mair, W., Vanyushkina, A., Khaitovich, P., Belousov, V., Vysokikh, M., Sergiev, P., and Dontsova, O. (2019) LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism, Proc. Natl. Acad. Sci. USA, 116, 4940-4945, https://doi.org/10.1073/pnas.1809105116.
  11. Matsumoto, A., Pasut, A., Matsumoto, M., Yamashita, R., Fung, J., Monteleone, E., Saghatelian, A., Nakayama, K. I., Clohessy, J. G., and Pandolfi, P. P. (2017) mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide, Nature, 541, 228-232, https://doi.org/10.1038/nature21034.
  12. Dong, X., Zhang, K., Xun, C., Chu, T., Liang, S., Zeng, Y., and Liu, Z. (2023) Small Open reading frame-encoded micro-peptides: an emerging protein world, Int. J. Mol. Sci., 24, 10562, https://doi.org/10.3390/ijms241310562.
  13. Couso, J.-P., and Patraquim, P. (2017) Classification and function of small open reading frames, Nat. Rev. Mol. Cell Biol., 18, 575-589, https://doi.org/10.1038/nrm.2017.58.
  14. Xie, L., Bowman, M. E., Louie, G. V., Zhang, C., Ardejani, M. S., Huang, X., Chu, Q., Donaldson, C. J., Vaughan, J. M., Shan, H., Powers, E. T., Kelly, J. W., Lyumkis, D., Noel, J. P., and Saghatelian, A. (2023) Biochemistry and protein interactions of the CYREN microprotein, Biochemistry, 62, 3050-3060, https://doi.org/10.1021/acs.biochem.3c00397.
  15. Zhu, K.-G., Yang, J., Zhu, Y., Zhu, Q., Pan, W., Deng, S., He, Y., Zuo, D., Wang, P., Han, Y., and Zhang, H.-Y. (2023) The microprotein encoded by exosomal lncAKR1C2 promotes gastric cancer lymph node metastasis by regulating fatty acid metabolism, Cell Death Dis., 14, 708, https://doi.org/10.1038/s41419-023-06220-1.
  16. Zheng, W., Guo, Y., Zhang, G., Bai, J., Song, Y., Song, X., Zhu, Q., Bao, X., Wu, G., and Zhang, C. (2023) Peptide encoded by lncRNA BVES-AS1 promotes cell viability, migration, and invasion in colorectal cancer cells via the SRC/mTOR signaling pathway, PLoS One, 18, e0287133, https://doi.org/10.1371/journal.pone.0287133.
  17. Guo, B., Zhai, D., Cabezas, E., Welsh, K., Nouraini, S., Satterthwait, A. C., and Reed, J. C. (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation, Nature, 423, 456-461, https://doi.org/10.1038/nature01627.
  18. Makarewich, C. A., Munir, A. Z., Schiattarella, G. G., Bezprozvannaya, S., Raguimova, O. N., Cho, E. E., Vidal, A. H., Robia, S. L., Bassel-Duby, R., and Olson, E. N. (2018) The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy, Elife, 7, e38319, https://doi.org/10.7554/eLife.38319.
  19. Reddy, U. V., Weber, D. K., Wang, S., Larsen, E. K., Gopinath, T., De Simone, A., Robia, S., and Veglia, G. (2022) A kink in DWORF helical structure controls the activation of the sarcoplasmic reticulum Ca2+-ATPase, Structure, 30, 360-370, https://doi.org/10.1016/j.str.2021.11.003.
  20. Tonkin, J., and Rosenthal, N. (2015) One small step for muscle: a new micropeptide regulates performance, Cell Metab., 21, 515-516, https://doi.org/10.1016/j.cmet.2015.03.013.
  21. Anderson, D. M., Makarewich, C. A., Anderson, K. M., Shelton, J. M., Bezprozvannaya, S., Bassel-Duby, R., and Olson, E. N. (2016) Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides, Sci. Signal., 9, aaj1460, https://doi.org/10.1126/scisignal.aaj1460.
  22. Frith, M. C., Forrest, A. R., Nourbakhsh, E., Pang, K. C., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., Bailey, T. L., and Grimmond, S. M. (2006) The abundance of short proteins in the mammalian proteome, PLoS Genet., 2, e52, https://doi.org/10.1371/journal.pgen.0020052.
  23. Kute, P. M., Soukarieh, O., Tjeldnes, H., Trégouët, D.-A., and Valen, E. (2022) Small open reading frames, how to find them and determine their function, Front. Genet., 12, 796060, https://doi.org/10.3389/fgene.2021.796060.
  24. Hurst, L. (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution, Trends Genet., 18, 486-487, https://doi.org/10.1016/s0168-9525(02)02722-1.
  25. Lin, M. F., Jungreis, I., and Kellis, M. (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions, Bioinformatics, 27, i275-i282, https://doi.org/10.1093/bioinformatics/btr209.
  26. Mackowiak, S. D., Zauber, H., Bielow, C., Thiel, D., Kutz, K., Calviello, L., Mastrobuoni, G., Rajewsky, N., Kempa, S., Selbach, M., and Obermayer, B. (2015) Extensive identification and analysis of conserved small ORFs in animals, Genome Biol., 16, 179, https://doi.org/10.1186/s13059-015-0742-x.
  27. Ladoukakis, E., Pereira, V., Magny, E. G., Eyre-Walker, A., and Couso, J. P. (2011) Hundreds of putatively functional small open reading frames in Drosophila, Genome Biol., 12, R118, https://doi.org/10.1186/gb-2011-12-11-r118.
  28. Badger, J. H., and Olsen, G. J. (1999) CRITICA: coding region identification tool invoking comparative analysis, Mol. Biol. Evol., 16, 512-524, https://doi.org/10.1093/oxfordjournals.molbev.a026133.
  29. Kong, L., Zhang, Y., Ye, Z.-Q., Liu, X.-Q., Zhao, S.-Q., Wei, L., and Gao, G. (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine, Nucleic Acids Res., 35, W345-W349, https://doi.org/10.1093/nar/gkm391.
  30. Chen, Z., Meng, J., Zhao, S., Yin, C., and Luan, Y. (2023) sORFPred: a method based on comprehensive features and ensemble learning to predict the sORFs in plant LncRNAs, Interdiscip. Sci. Comput. Life Sci., 15, 189-201, https://doi.org/10.1007/s12539-023-00552-4.
  31. Zhao, S., Meng, J., Kang, Q., and Luan, Y. (2022) Identifying LncRNA-encoded short peptides using optimized hybrid features and ensemble learning, Trans. Comput. Biol. and Bioinf., 19, 2873-2881, https://doi.org/10.1109/TCBB.2021.3104288.
  32. Raj, A., Wang, S. H., Shim, H., Harpak, A., Li, Y. I., Engelmann, B., Stephens, M., Gilad, Y., and Pritchard, J. K. (2016) Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling, Elife, 5, e13328, https://doi.org/10.7554/eLife.13328.
  33. Bazzini, A. A., Johnstone, T. G., Christiano, R., Mackowiak, S. D., Obermayer, B., Fleming, E. S., Vejnar, C. E., Lee, M. T., Rajewsky, N., Walther, T. C., and Giraldez, A. J. (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation, EMBO J., 33, 981-993, https://doi.org/10.1002/embj.201488411.
  34. Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., and Liu, J. O. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin, Nat. Chem. Biol., 6, 209-217, https://doi.org/10.1038/nchembio.304.
  35. Brar, G. A., and Weissman, J. S. (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis, Nat. Rev. Mol. Cell. Biol., 16, 651-664, https://doi.org/10.1038/nrm4069.
  36. Ingolia, N. T., Brar, G. A., Stern-Ginossar, N., Harris, M. S., Talhouarne, G. J. S., Jackson, S. E., Wills, M. R., and Weissman, J. S. (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes, Cell Rep., 8, 1365-1379, https://doi.org/10.1016/j.celrep.2014.07.045.
  37. Bartholomäus, A., Del Campo, C., and Ignatova, Z. (2016) Mapping the non-standardized biases of ribosome profiling, Biol. Chem., 397, 23-35, https://doi.org/10.1515/hsz-2015-0197.
  38. Martinez, T. F., Chu, Q., Donaldson, C., Tan, D., Shokhirev, M. N., and Saghatelian, A. (2020) Accurate annotation of human protein-coding small open reading frames, Nat. Chem. Biol., 16, 458-468, https://doi.org/10.1038/s41589-019-0425-0.
  39. Ingolia, N. T., Lareau, L. F., and Weissman, J. S. (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 147, 789-802, https://doi.org/10.1016/j.cell.2011.10.002.
  40. Fresno, M., Jiménez, A., and Vázquez, D. (1977) Inhibition of translation in eukaryotic systems by harringtonine, Eur. J. Biochem., 72, 323-330, https://doi.org/10.1111/j.1432-1033.1977.tb11256.x.
  41. Lee, S., Liu, B., Lee, S., Huang, S.-X., Shen, B., and Qian, S.-B. (2012) Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution, Proc. Natl. Acad. Sci. USA, 109, https://doi.org/10.1073/pnas.1207846109.
  42. Gao, X., Wan, J., Liu, B., Ma, M., Shen, B., and Qian, S.-B. (2015) Quantitative profiling of initiating ribosomes in vivo, Nat. Methods, 12, 147-153, https://doi.org/10.1038/nmeth.3208.
  43. Mudge, J. M., Ruiz-Orera, J., Prensner, J. R., Brunet, M. A., Calvet, F., Jungreis, I., Gonzalez, J. M., Magrane, M., Martinez, T. F., Schulz, J. F., Yang, Y. T., Albà, M. M., Aspden, J. L., Baranov, P. V., Bazzini, A. A., Bruford, E., Martin, M. J., Calviello, L., Carvunis, A.-R., Chen, J., Couso, J. P., Deutsch, E. W., Flicek, P., Frankish, A., Gerstein, M., Hubner, N., Ingolia, N. T., Kellis, M., Menschaert, G., Moritz, R. L., Ohler, U., Roucou, X., Saghatelian, A., Weissman, J. S., and Van Heesch, S. (2022) Standardized annotation of translated open reading frames, Nat. Biotechnol., 40, 994-999, https://doi.org/10.1038/s41587-022-01369-0.
  44. Spealman, P., Naik, A. W., May, G. E., Kuersten, S., Freeberg, L., Murphy, R. F., and McManus, J. (2018) Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data, Genome Res., 28, 214-222, https://doi.org/10.1101/gr.221507.117.
  45. Quaife, N. M., Chothani, S., Schulz, J. F., Lindberg, E. L., Vanezis, K., Adami, E., O’Fee, K., Greiner, J., Litviňuková, M., Van Heesch, S., Whiffin, N., Hubner, N., Schafer, S., Rackham, O., Cook, S. A., and Barton, P. J. R. (2023) LINC01013 is a determinant of fibroblast activation and encodes a novel fibroblast-activating micropeptide, J. Cardiovasc. Trans. Res., 16, 77-85, https://doi.org/10.1007/s12265-022-10288-z.
  46. Sun, L., Wang, W., Han, C., Huang, W., Sun, Y., Fang, K., Zeng, Z., Yang, Q., Pan, Q., Chen, T., Luo, X., and Chen, Y. (2021) The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation, Mol. Cell, 81, 4493-4508.e9, https://doi.org/10.1016/j.molcel.2021.08.033.
  47. Van Heesch, S., Witte, F., Schneider-Lunitz, V., Schulz, J. F., Adami, E., Faber, A. B., Kirchner, M., Maatz, H., Hubner, N., et al. (2019) The translational landscape of the human heart, Cell, 178, 242-260.e29, https://doi.org/10.1016/j.cell.2019.05.010.10.
  48. Wang, S., Tian, L., Liu, H., Li, X., Zhang, J., Chen, X., Jia, X., Zheng, X., Wu, S., Chen, Y., Yan, J., and Wu, L. (2020) Large-scale discovery of non-conventional peptides in maize and arabidopsis through an integrated peptidogenomic pipeline, Mol. Plant, 13, 1078-1093, https://doi.org/10.1016/j.molp.2020.05.012.
  49. Cardon, T., Hervé, F., Delcourt, V., Roucou, X., Salzet, M., Franck, J., and Fournier, I. (2020) Optimized sample preparation workflow for improved identification of ghost proteins, Anal. Chem., 92, 1122-1129, https://doi.org/10.1021/acs.analchem.9b04188.
  50. Ma, J., Ward, C. C., Jungreis, I., Slavoff, S. A., Schwaid, A. G., Neveu, J., Budnik, B. A., Kellis, M., and Saghatelian, A. (2014) Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue, J. Proteome Res., 13, 1757-1765, https://doi.org/10.1021/pr401280w.
  51. Ma, J., Diedrich, J. K., Jungreis, I., Donaldson, C., Vaughan, J., Kellis, M., Yates, J. R., and Saghatelian, A. (2016) Improved identification and analysis of small open reading frame encoded polypeptides, Anal. Chem., 88, 3967-3975, https://doi.org/10.1021/acs.analchem.6b00191.
  52. Cassidy, L., Helbig, A. O., Kaulich, P. T., Weidenbach, K., Schmitz, R. A., and Tholey, A. (2021) Multidimensional separation schemes enhance the identification and molecular characterization of low molecular weight proteomes and short open reading frame-encoded peptides in top-down proteomics, J. Proteomics, 230, 103988, https://doi.org/10.1016/j.jprot.2020.103988.
  53. Tran, J. C., and Doucette, A. A. (2008) Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation, Anal. Chem., 80, 1568-1573, https://doi.org/10.1021/ac702197w.
  54. Branca, R. M. M., Orre, L. M., Johansson, H. J., Granholm, V., Huss, M., Pérez-Bercoff, Å., Forshed, J., Käll, L., and Lehtiö, J. (2014) HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics, Nat. Methods, 11, 59-62, https://doi.org/10.1038/nmeth.2732.
  55. Nesvizhskii, A. I. (2014) Proteogenomics: concepts, applications and computational strategies, Nat. Methods, 11, 1114-1125, https://doi.org/10.1038/nmeth.3144.
  56. Fijalkowski, I., Peeters, M. K. R., and Van Damme, P. (2021) Small protein enrichment improves proteomics detection of sORF encoded polypeptides, Front. Genet., 12, 713400, https://doi.org/10.3389/fgene.2021.713400.
  57. Cassidy, L., Kaulich, P. T., and Tholey, A. (2023) Proteoforms expand the world of microproteins and short open reading frame-encoded peptides, iScience, 26, 106069, https://doi.org/10.1016/j.isci.2023.106069.
  58. Khitun, A., and Slavoff, S. A. (2019) Proteomic detection and validation of translated small open reading frames, Curr. Protoc. Chem. Biol., 11, e77, https://doi.org/10.1002/cpch.7.
  59. Slavoff, S. A., Heo, J., Budnik, B. A., Hanakahi, L. A., and Saghatelian, A. (2014) A human short open reading frame (sORF)-encoded polypeptide that stimulates DNA end joining, J. Biol. Chem., 289, 10950-10957, https://doi.org/10.1074/jbc.C113.533968.
  60. Ouspenskaia, T., Law, T., Clauser, K. R., Klaeger, S., Sarkizova, S., Aguet, F., Li, B., Christian, E., Knisbacher, B. A., Le, P. M., Hartigan, C. R., Keshishian, H., Apffel, A., Oliveira, G., Zhang, W., Chen, S., Chow, Y. T., Ji, Z., Jungreis, I., Shukla, S. A., Justesen, S., Bachireddy, P., Kellis, M., Getz, G., Hacohen, N., Keskin, D. B., Carr, S. A., Wu, C. J., and Regev, A. (2022) Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer, Nat. Biotechnol, 40, 209-217, https://doi.org/10.1038/s41587-021-01021-3.
  61. Wang, J. Y., and Doudna, J. A. (2023) CRISPR technology: a decade of genome editing is only the beginning, Science, 379, eadd8643, https://doi.org/10.1126/science.add8643.
  62. Shalem, O., Sanjana, N. E., and Zhang, F. (2015) High-throughput functional genomics using CRISPR-Cas9, Nat. Rev. Genet., 16, 299-311, https://doi.org/10.1038/nrg3899.
  63. Chen, J., Brunner, A.-D., Cogan, J. Z., Nuñez, J. K., Fields, A. P., Adamson, B., Itzhak, D. N., Li, J. Y., Mann, M., Leonetti, M. D., and Weissman, J. S. (2020) Pervasive functional translation of noncanonical human open reading frames, Science, 367, 1140-1146, https://doi.org/10.1126/science.aay0262.
  64. Prensner, J. R., Enache, O. M., Luria, V., Krug, K., Clauser, K. R., Dempster, J. M., Karger, A., Wang, L., Stumbraite, K., Wang, V. M., Botta, G., Lyons, N. J., Goodale, A., Kalani, Z., Fritchman, B., Brown, A., Alan, D., Green, T., Yang, X., Jaffe, J. D., Roth, J. A., Piccioni, F., Kirschner, M. W., Ji, Z., Root, D. E., and Golub, T. R. (2021) Noncanonical open reading frames encode functional proteins essential for cancer cell survival, Nat. Biotechnol., 39, 697-704, https://doi.org/10.1038/s41587-020-00806-2.
  65. Schlesinger, D., Dirks, C., Navarro, C., Lafranchi, L., Spinner, A., Raja, G. L., Mun-Sum Tong, G., Eirich, J., Martinez, T. F., and Elsässer, S. J. (2025) A large-scale sORF screen identifies putative microproteins involved in cancer cell fitness, iScience, 28, 111884, https://doi.org/10.1016/j.isci.2025.111884.
  66. Lafranchi, L., Spinner, A., Hornisch, M., Schlesinger, D., Luzon, C. N., Brinkenstråhle, L., Shao, R., Piazza, I., and Elsässer, S. J. (2024) Pooled overexpression screening identifies PIPPI as a novel microprotein involved in the ER stress response, bioRxiv, https://doi.org/10.1101/2024.12.08.627409.
  67. Delcourt, V., Brunelle, M., Roy, A. V., Jacques, J.-F., Salzet, M., Fournier, I., and Roucou, X. (2018) The protein coded by a short open reading frame, not by the annotated coding sequence, is the main gene product of the dual-coding gene MIEF1, Mol. Cell. Proteom., 17, 2402-2411, https://doi.org/10.1074/mcp.RA118.000593.
  68. Zhang, C., Zhou, B., Gu, F., Liu, H., Wu, H., Yao, F., Zheng, H., Fu, H., Chong, W., Cai, S., Huang, M., Ma, X., Guo, Z., Li, T., Deng, W., Zheng, M., Ji, Q., Zhao, Y., Ma, Y., Wang, Q.-E., Tang, T.-S., and Guo, C. (2022) Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation, Mol. Cell, 82, 1297-1312.e8, https://doi.org/10.1016/j.molcel.2022.01.020.
  69. Zhang, H., Liao, Z., Wang, W., Liu, Y., Zhu, H., Liang, H., Zhang, B., and Chen, X. (2023) A micropeptide JunBP regulated by TGF-β promotes hepatocellular carcinoma metastasis, Oncogene, 42, 113-123, https://doi.org/10.1038/s41388-022-02518-0.
  70. Guo, B., Wu, S., Zhu, X., Zhang, L., Deng, J., Li, F., Wang, Y., Zhang, S., Wu, R., Lu, J., and Zhou, Y. (2020) Micropeptide CIP 2A-BP encoded by LINC 00665 inhibits triple-negative breast cancer progression, EMBO J., 39, e102190, https://doi.org/10.15252/embj.2019102190.
  71. Huang, J.-Z., Chen, M., Chen, D., Gao, X.-C., Zhu, S., Huang, H., Hu, M., Zhu, H., and Yan, G.-R. (2017) A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth, Mol. Cell, 68, 171-184.e6, https://doi.org/10.1016/j.molcel.2017.09.015.
  72. Rocha, A. L., Pai, V., Perkins, G., Chang, T., Ma, J., De Souza, E. V., Chu, Q., Vaughan, J. M., Diedrich, J. K., Ellisman, M. H., and Saghatelian, A. (2024) An inner mitochondrial membrane microprotein from the SLC35A4 upstream ORF regulates cellular metabolism, J. Mol. Biol., 436, 168559, https://doi.org/10.1016/j.jmb.2024.168559.
  73. Konina, D., Sparber, P., Viakhireva, I., Filatova, A., and Skoblov, M. (2021) Investigation of LINC00493/SMIM26 gene suggests its dual functioning at mRNA and protein level, Int. J. Mol. Sci. Artic. J. Mol. Sci., 22, 8477, https://doi.org/10.3390/ijms22168477.
  74. Liang, X., Shen, W., Sun, H., Migawa, M. T., Vickers, T. A., and Crooke, S. T. (2016) Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames, Nat. Biotechnol., 34, 875-880, https://doi.org/10.1038/nbt.3589.
  75. Anderson, D. M., Anderson, K. M., Chang, C.-L., Makarewich, C. A., Nelson, B. R., McAnally, J. R., Kasaragod, P., Shelton, J. M., Liou, J., Bassel-Duby, R., and Olson, E. N. (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 160, 595-606, https://doi.org/10.1016/j.cell.2015.01.009.
  76. Ryskina, A. M., Kudriaeva, A. A., and Belogurov, A. A. (2024) Microproteins tracking: when size does really matter, Rev. Adv. Chem., 14, 305-319, https://doi.org/10.1134/S2634827624600324.
  77. Chu, Q., Martinez, T. F., Novak, S. W., Donaldson, C. J., Tan, D., Vaughan, J. M., Chang, T., Diedrich, J. K., Andrade, L., Kim, A., Zhang, T., Manor, U., and Saghatelian, A. (2019) Regulation of the ER stress response by a mitochondrial microprotein, Nat. Commun., 10, 12816, https://doi.org/10.1038/s41467-019-12816-z.
  78. Niu, L., Lou, F., Sun, Y., Sun, L., Cai, X., Liu, Z., Zhou, H., Wang, H., Wang, Z., Bai, J., Yin, Q., Zhang, J., Chen, L., Peng, D., Xu, Z., Gao, Y., Tang, S., Fan, L., and Wang, H. (2020) A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation, Sci. Adv., 6, eaaz2059, https://doi.org/10.1126/sciadv.aaz2059.
  79. Rathore, A., Chu, Q., Tan, D., Martinez, T. F., Donaldson, C. J., Diedrich, J. K., Yates, J. R., and Saghatelian, A. (2018) MIEF1 Microprotein Regulates Mitochondrial Translation, Biochemistry, 57, 5564-5575, https://doi.org/10.1021/acs.biochem.8b00726.
  80. Schägger, H. (2006) Tricine-SDS-PAGE, Nat. Protoc., 1, 16-22, https://doi.org/10.1038/nprot.2006.4.
  81. Stein, C. S., Jadiya, P., Zhang, X., McLendon, J. M., Abouassaly, G. M., Witmer, N. H., Anderson, E. J., Elrod, J. W., and Boudreau, R. L. (2018) Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency, Cell Rep., 23, 3710-3720.e8, https://doi.org/10.1016/j.celrep.2018.06.002.
  82. Okita, N., Higami, Y., Fukai, F., Kobayashi, M., Mitarai, M., Sekiya, T., and Sasaki, T. (2017) Modified Western blotting for insulin and other diabetes-associated peptide hormones, Sci. Rep., 7, 6949, https://doi.org/10.1038/s41598-017-04456-4.
  83. Huang, N., Li, F., Zhang, M., Zhou, H., Chen, Z., Ma, X., Yang, L., Wu, X., Zhong, J., Xiao, F., Yang, X., Zhao, K., Li, X., Xia, X., Liu, Z., Gao, S., and Zhang, N. (2021) An Upstream Open Reading Frame in Phosphatase and Tensin Homolog Encodes a Circuit Breaker of Lactate Metabolism, Cell Metab., 33, 128-144.e9, https://doi.org/10.1016/j.cmet.2020.12.008.
  84. Cabantous, S., Terwilliger, T. C., and Waldo, G. S. (2005) Protein tagging and detection with engineered selfassembling fragments of green fluorescent protein, Nat. Biotechnol., 23, 102-107, https://doi.org/10.1038/nbt1044.
  85. Kamiyama, D., Sekine, S., Barsi-Rhyne, B., Hu, J., Chen, B., Gilbert, L. A., Ishikawa, H., Leonetti, M. D., Marshall, W. F., Weissman, J. S., and Huang, B. (2016) Versatile protein tagging in cells with split fluorescent protein, Mol. Cell, 82, 2900-2911.e7, https://doi.org/10.1038/ncomms11046.
  86. Na, Z., Dai, X., Zheng, S.-J., Bryant, C. J., Loh, K. H., Su, H., Luo, Y., Buhagiar, A. F., Cao, X., Baserga, S. J., Chen, S., and Slavoff, S. A. (2022) Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID, Mol. Cell, 82, 2900-2911.e7, https://doi.org/10.1016/j.molcel.2022.06.035.
  87. Nguyen, T. M. T., Kim, J., Doan, T. T., Lee, M.-W., and Lee, M. (2020) APEX proximity labeling as a versatile tool for biological research, Biochemistry, 59, 260-269, https://doi.org/10.1021/acs.biochem.9b00791.
  88. Roux, K. J., Kim, D. I., Burke, B., and May, D. G. (2018) BioID: A Screen for Protein-Protein Interactions, Curr. Protoc. Protein Sci., 91, 19.23.1-19.23.15, https://doi.org/10.1002/cpps.51.
  89. Bosch, J. A., Chen, C., and Perrimon, N. (2021) Proximity-dependent labeling methods for proteomic profiling in living cells: an update, Wiley Interdiscip. Rev. Dev. Biol., 10, e392, https://doi.org/10.1002/wdev.392.
  90. Chu, Q., Rathore, A., Diedrich, J. K., Donaldson, C. J., Yates, J. R., and Saghatelian, A. (2017) Identification of microprotein-protein interactions via APEX tagging, Biochemistry, 56, 3299-3306, https://doi.org/10.1021/acs.biochem.7b00265.
  91. Singh, D. R., Dalton, M. P., Cho, E. E., Pribadi, M. P., Zak, T. J., Šeflová, J., Makarewich, C. A., Olson, E. N., and Robia, S. L. (2019) Newly discovered micropeptide regulators of SERCA form oligomers but bind to the pump as monomers, J. Mol. Biol., 431, 4429-4443, https://doi.org/10.1016/j.jmb.2019.07.037.
  92. Hu, Y., Cheng, K., He, L., Zhang, X., Jiang, B., Jiang, L., Li, C., Wang, G., Yang, Y., and Liu, M. (2021) NMR-based methods for protein analysis, Anal. Chem., 93, 1866-1879, https://doi.org/10.1021/acs.analchem.0c03830.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».