AP-site does not introduce significant distortions into the DNA structure in the nucleosomes in vitro

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

DNA damage results in distortion of the B-form structure of the double DNA helix. Recognition of such distortion by DNA repair proteins is an important stage in the process initiation. The nucleosome structure imposes restrictions on the mobility and plasticity of the DNA geometry. Under interaction of repair proteins with nucleosomal DNA, the main issue is the implementation of the DNA structure that characterize the damage itself in a specific context. In addition, the DNA duplex in the nucleosome has a regular profile of contacts with histones corresponding to the turn of the DNA helix. By changing this profile, one can judge about changes in the DNA structure. This profile correlates with the availability of the corresponding nucleotides for interaction with DNA-binding proteins. In our work, using the footprinting assay, it was shown that the presence of an AP site within the second-third turn from the 5'-end of the nucleosomal DNA does not significantly affect the profile of DNA contacts with histones.

Негізгі сөздер

Авторлар туралы

M. Kutuzov

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Novosibirsk

E. Belousova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Novosibirsk

V. Dreiman

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: lavrik@niboch.nsc.ru
Novosibirsk

O. Lavrik

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lavrik@niboch.nsc.ru
Novosibirsk

Әдебиет тізімі

  1. Chen, J., Dupradeau, F.-Y., Case, D. A., Turner, C. J., and Stubbe, J. (2008) DNA oligonucleotides with A, T, G or C opposite an abasic site: structure and dynamics, Nucleic Acids Res., 36, 253-262, https://doi.org/10.1093/nar/gkm622.
  2. Wilson, D. M. 3rd. (2005) Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures, J. Mol. Biol., 345, 1003-1014, https://doi.org/10.1016/j.jmb.2004.11.028.
  3. Fan, J., Matsumoto, Y., and Wilson, D. M. 3rd. (2006) Nucleotide sequence and DNA secondary structure, as well as replication protein A, modulate the single-stranded abasic endonuclease activity of APE1, J. Biol. Chem., 281, 3889-3898, https://doi.org/10.1074/jbc.M511004200.
  4. Hinz, J. M. (2014) Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity, Mutat. Res., 766-767, 19-24, https://doi.org/10.1016/j.mrfmmm.2014.05.008.
  5. Olmon, E. D., and Delaney, S. (2017) Differential ability of five DNA glycosylases to recognize and repair damage on nucleosomal DNA, ACS Chem. Biol., 12, 692-701, https://doi.org/10.1021/acschembio.6b00921.
  6. Beard, B. C., Wilson, S. H., and Smerdon, M. J. (2003) Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes, Proc. Natl. Acad. Sci. USA, 100, 7465-7470, https://doi.org/10.1073/pnas.1330328100.
  7. Osakabe, A., Arimura, Y., Matsumoto, S., Horikoshi, N., Sugasawa, K., and Kurumizaka, H. (2017) Polymorphism of apyrimidinic DNA structures in the nucleosome, Sci. Rep., 7, 41783, https://doi.org/10.1038/srep41783.
  8. Peterson, C. L., and Hansen, J. C. (2008) Chicken erythrocyte histone octamer preparation, CSH Protocols, 2008, pdb.prot5112, https://doi.org/10.1101/pdb.prot5112.
  9. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory manual, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, N.Y.
  10. Luger, K., Rechsteiner, T. J., and Richmond, T. J. (1999) Expression and purification of recombinant histones and nucleosome reconstitution, Methods Mol. Biol., 119, 1-16, https://doi.org/10.1385/1-59259-681-9:1.
  11. Lowary, P. T., and Widom, J. (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning, J. Mol. Biol., 276, 19-42, https://doi.org/10.1006/jmbi.1997.1494.
  12. Armeev, G. A., Kniazeva, A. S., Komarova, G. A., Kirpichnikov, M. P., and Shaytan, A. K. (2021) Histone dynamics mediate DNA unwrapping and sliding in nucleosomes, Nat. Commun., 12, 2387, https://doi.org/10.1038/s41467-021-22636-9.
  13. Chen, Z., Gabizon, R., Brown, A. I., Lee, A., Song, A., Díaz-Celis, C., Kaplan, C. D., Koslover, E. F., Yao, T., Bustamante, C. (2019) High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier, Elife, 8, e48281, https://doi.org/10.7554/eLife.48281.
  14. Balasubramanian, B., Pogozelski, W. K., and Tullius, T. D. (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone, Proc. Natl. Acad. Sci. USA, 95, 9738-9743, https://doi.org/10.1073/pnas.95.17.9738.
  15. Andreeva, N. A., Maluchenko, N. V., Sivkina, A. L., Chertkov, O. V., Valieva, M. E., Kotova, E. Y., Kirpichnikov, M. P., Studitsky, V. M., and Feofanov, A. V. (2022) Na+ and K+ ions differently affect nucleosome structure, stability, and interactions with proteins, Microsc. Microanal., 28, 243-253, https://doi.org/10.1017/S1431927621013751.
  16. Weaver, N. M., Hoitsma, N. M., Spencer, J. J., Gakhar, L., Schnicker, N. J., and Freudenthal, B. D. (2022) Structural basis for APE1 processing DNA damage in the nucleosome, Nat. Commun., 13, 5390, https://doi.org/10.1038/s41467-022-33057-7.
  17. Carey, D. C., and Strauss, P. R. (1999) Human apurinic/apyrimidinic endonuclease is processive, Biochemistry, 38, 16553-16560, https://doi.org/10.1021/bi9907429.
  18. Hinz, J. M., Rodriguez, Y., and Smerdon, M. J. (2010) Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme, Proc. Natl. Acad. Sci. USA, 107, 4646-4651, https://doi.org/10.1073/pnas.0914443107.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».