DESIGNING A THERMOSTABLE MINI-INTEIN FOR INTEIN-MEDIATED PURIFICATION OF RECOMBINANT PROTEINS AND PEPTIDES
- Authors: Karanov A.A.1,2, Zayats E.A.1, Kostromina M.A.1, Abramchik Y.A.1, Sharafutdinova A.R.1, Surkova M.S.1, Zamyatnin A.A.2, Esipov R.S.1,2
-
Affiliations:
- Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University
- Issue: Vol 90, No 6 (2025)
- Pages: 884-895
- Section: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/307922
- DOI: https://doi.org/10.31857/S0320972525060117
- EDN: https://elibrary.ru/JDMFOD
- ID: 307922
Cite item
Abstract
About the authors
A. A. Karanov
Institute of Bioorganic Chemistry, Russian Academy of Sciences; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University
Email: andrey-karanov2000@mail.ru
Moscow, Russia; Moscow, Russia
E. A. Zayats
Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
M. A. Kostromina
Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
Yu. A. Abramchik
Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
A. R. Sharafutdinova
Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
M. S. Surkova
Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
A. A. Zamyatnin
Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State UniversityMoscow, Russia
R. S. Esipov
Institute of Bioorganic Chemistry, Russian Academy of Sciences; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
References
- Ben-Bassat, A. (1991) Purification and Analysis of Recombinant Proteins (Seetharam, R., and Sharma, S. K., eds), Marcel Dekker, N.Y., pp. 147-151.
- Enfors, S. O. (1992) Control of in vivo proteolysis in the production of recombinant proteins, Trends Biotechnol, 10, 310-315, https://doi.org/10.1016/0167-7799(92)90256-u.
- Mahmoodi, S., Pourhassan-Moghaddam, M., Wood, D. W., Majdi, H., and Zarghami, N. (2019) Current affinity approaches for purification of recombinant proteins, Cogent Biol., 5, 1665406, https://doi.org/10.1080/23312025.2019.1665406.
- Eskandari, A., Leow, T. C., Rahman, M. B. A., and Oslan, S. N. (2024) Utilization and prospect of purification technologies in natural proteins, peptides and recombinant proteins, J. Proteins Proteom., 15, 233-257, https://doi.org/10.1007/s42485-024-00139-7.
- Esipov, R. S., Stepanenko, V. N., Chupova, L. A., Boyarskikh, U. A., Filipenko, M. L., and Miroshnikov, A. I. (2008) Production of recombinant human epidermal growth factor using Ssp dnaB mini-intein system, Protein Expr. Purif., 61, 1-6, https://doi.org/10.1016/j.pep.2008.05.009.
- Volkmann, G., and Mootz, H. D. (2013) Recent progress in intein research: from mechanism to directed evolution and applications, Cell Mol. Life Sci., 70, 1185-1206, https://doi.org/10.1007/s00018-012-1120-4.
- Yuan, H., Prabhala, S. V., Coolbaugh, M. J., Stimple, S. D., and Wood, D. W. (2024) Improved self-cleaving precipitation tags for efficient column free bioseparations, Protein Expr. Purif., 224, 106578, https://doi.org/10.1016/j.pep.2024.106578.
- Lahiry, A., Fan, Y., Stimple, S. D., Raith, M., and Wood, D. W. (2018) Inteins as tools for tagless and traceless protein purification, J. Chem. Technol. Biotechnol., 93, 1827-1835, https://doi.org/10.1002/jctb.5415.
- Cui, C., Zhao, W., Chen, J., Wang, J., and Li, Q. (2006) Elimination of in vivo cleavage between target protein and intein in the intein-mediated protein purification systems, Protein Expr. Purif., 50, 74-81, https://doi.org/10.1016/j.pep.2006.05.019.
- Hiraga, K., Derbyshire, V., Dansereau, J. T., Van Roey, P., and Belfort, M. (2005) Minimization and stabilization of the Mycobacterium tuberculosis recA intein, J. Mol. Biol., 354, 916-926, https://doi.org/10.1016/j.jmb.2005.09.088.
- Esipov, R. S., Beirakhova, K. A., Chupova, L. A., Likhvantseva, V. G., Stepanova, E. V., and Miroshnokov, A. I. (2012) Recombinant fragment of pigment epithelium-derived factor (44-77) prevents pathological corneal neovascularization, Bioorg. Khim., 38, 1-8.
- Shen, B., Sun, X., Zuo, X., Shilling, T., Apgar, J., Ross, M., Bougri, O., Samoylov, V., Parker, M., Hancock, E., Lucero, H., Gray, B., Ekborg, N. A., Zhang, D., Johnson, J. C. S., Lazar, G., and Raab, R. M. (2012) Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing, Nat. Biotechnol., 30, 1131-1136, e2402, https://doi.org/10.1038/nbt.2402.
- Wang, Y., Shi, Y., Hellinga, H. W., and Beese, L. S. (2023) Thermally controlled intein splicing of engineered DNA polymerases provides a robust and generalizable solution for accurate and sensitive molecular diagnostics, Nucleic Acids Res., 51, 5883-5894, https://doi.org/10.1093/nar/gkad368.
- Yan, S.-S., Yan, J., Shi, G., Xu, Q., Chen, S.-C., and Tian, Y.-W. (2005) Production of native protein by using Synechocystis sp. PCC6803 DnaB mini-intein in Escherichia coli, Protein Expr. Purif., 40, 340-345, https://doi.org/10.1016/j.pep.2004.12.021.
- Wu, H., Xu, M.-Q., and Liu, X.-Q. (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein, Biochim. Biophys. Acta, 1387, 422-432, https://doi.org/10.1016/s0167-4838(98)00157-5.
- Malone, C. L., Boles, B. R., and Horswill, A. R. (2007) Biosynthesis of Staphylococcus aureus autoinducing peptides by using the Synechocystis DnaB mini-intein, Appl. Environ. Microbiol., 73, 6036-6044, https://doi.org/10.1128/AEM.00912-07.
- Tian, L., and Sun, S. S. (2011) A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform, PLoS One, 6, e24183, https://doi.org/10.1371/journal.pone.0024183.
- Gangopadhhyay, J. P., Jiang, S.-Q., van Berkel, P., and Paulus, H. (2003) In vitro splicing of erythropoietin by the Mycobacterium tuberculosis RecA intein without substituting amino acids at the splice junctions, Biochim. Biophys. Acta, 1619, 193-200, https://doi.org/10.1016/s0304-4165(02)00495-6.
- Banki, M. R., Feng, L., and Wood, D. W. (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags, Nat. Methods, 2, 659-661, https://doi.org/10.1038/nmeth787.
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1016/0003-2697(76)90527-3.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
- Schägger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 166, 368-379, https://doi.org/10.1016/0003-2697(87)90587-2.
- Van Roey, P., Pereira, B., Li, Z., Hiraga, K., Belfort, M., and Derbyshire, V. (2007) Crystallographic and mutational studies of Mycobacterium tuberculosis recA mini-inteins suggest a pivotal role for a highly conserved aspartate residue, J. Mol. Biol., 367, 162-173, https://doi.org/10.1016/j.jmb.2006.12.050.
- Aranko, A. S., Oeemig, J. S., Zhou, D., Kajander, T., Wlodawer, A., and Iwaï, H. (2014) Structure-based engineering and comparison of novel split inteins for protein ligation, Mol. Biosyst., 10, 1023-1034, https://doi.org/10.1039/c4mb00021h.
- Lin, Y., Li, M., Song, H., Xu, L., Meng, Q., and Liu, X. Q. (2013) Protein trans-splicing of multiple atypical split inteins engineered from natural inteins, PLoS One, 8, e59516, https://doi.org/10.1371/journal.pone.0059516.
- Chong, S., Mersha, F. B., Comb, D. G., Scott, M. E., Landry, D., Vence, L. M., Perler, F. B., Benner, J., Kucera, R. B., Hirvonen, C. A., Pelletier, J. J., Paulus, H., and Xu, M. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element, Gene, 192, 271-281, https://doi.org/10.1016/s0378-1119(97)00105-4.
- Perler, F. B. (2002) InBase, the intein database, Nucleic Acids Res., 30, 383-384, https://doi.org/10.1093/nar/30.1.383.
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., and Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7, 539, https://doi.org/10.1038/msb.2011.75.
- Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA, Mol. Biol. Evol., 30, 1229-1235, https://doi.org/10.1093/molbev/mst012.
- Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C. C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., Beattie, C., Bertolli, O., Bridgland, A., Cherepanov, A., Congreve, M., et al. (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature, 630, 493-500, https://doi.org/10.1038/s41586-024-07487-w.
- Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. (2005) GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701-1718, https://doi.org/10.1002/jcc.20291.
- Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., and Shaw, D. E. (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, 78, 1950-1958, https://doi.org/10.1002/prot.22711.
- Sormanni, P., Aprile, F. A., and Vendruscolo, M. (2015) The CamSol method of rational design of protein mutants with enhanced solubility, J. Mol. Biol., 427, 478-490, https://doi.org/10.1016/j.jmb.2014.09.026.
Supplementary files
