(Strept)avidin Binds Glycoconjugates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fluorescently labeled and conjugated (strept)avidin is widely used for imaging of biotinylated molecules in immunological assays and histochemistry. The presented article shows that in addition to biotin, these proteins bind a number of glycans, including fragments of glycoprotein and glycolipid chains of mammals, in particular, antigens of the ABO blood system, oligolactosamines, 6-O-sulfated oligosaccharides. This interaction is inhibited in a dose-dependent manner by glycans in a form of polymeric (but not monomeric) conjugates at the micromolar concentration level, i.e. requires polyvalence. Taking into account the cluster organization of cell glycans (glycoproteins and glycolipids), when analyzing objects containing carbohydrates, this property is a potential source of error, that can be prevented by avoiding a large excess of (strept)avidin in the analytical system.

Full Text

Restricted Access

About the authors

N. V. Shilova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Academician Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology

Author for correspondence.
Email: pumatnv@gmail.com
Russian Federation, 117997, Moscow; 117997, Moscow

S. M. Polyakova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: pumatnv@gmail.com
Russian Federation, 117997, Moscow

A. Yu. Nokel

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Academician Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology

Email: pumatnv@gmail.com
Russian Federation, 117997, Moscow; 117997, Moscow

A. D. Lipatnikov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: pumatnv@gmail.com
Russian Federation, 117997, Moscow

E. A. Gordeeva

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: pumatnv@gmail.com
Russian Federation, 117997, Moscow

M. V. Lavrentyeva

MIREA – Russian Technological University

Email: pumatnv@gmail.com
Russian Federation, 119571, Moscow

N. V. Bovin

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: pumatnv@gmail.com
Russian Federation, 117997, Moscow

References

  1. Green, M. N. (1990) Avidin and streptavidin, Methods Enzymol., 184, 51-67, https://doi.org/10.1016/0076-6879(90)84259-J.
  2. Bing, T., Chang, T., Qi, C., Zhang, N., Liu, X., and Shangguan, D. (2012) Specific interactions between adenosine and streptavidin/avidin, Bioorg. Med. Chem. Lett., 22, 7052-7055, https://doi.org/10.1016/j.bmcl.2012.09.088.
  3. Caparon, M. H., De Ciechi, P. A., Devine, C. S., Olins, P. O., and Lee, S. C. (1996) Analysis of novel streptavidin-binding peptides, identified using a phage display library, shows that amino acids external to a perfectly conserved consensus sequence and to the presented peptides contribute to binding, Mol. Divers., 1, 241-246, https://doi.org/10.1007/BF01715528.
  4. Houen, G., and Hansen, K. (1997) Interference of sugars with the binding of biotin to streptavidin and avidin, J. Immunol. Methods, 210, 115-123, https://doi.org/10.1016/S0022-1759(97)00166-X.
  5. Smith, J. A., Xu, G., Feng, R., Janetka, J. W., and Moeller, K. D. (2016) C‐glycosides, array‐based addressable libraries, and the versatility of constant current electrochemistry, Electroanalysis, 28, 2808-2817, https://doi.org/10.1002/elan.201600200.
  6. Ennen, F., Boye, S., Lederer, A., Cernescu, M., Komber, H., Brutschy, B., Voit, B., and Appelhans, D. (2014) Biohybrid structures consisting of biotinylated glycodendrimers and proteins: influence of the biotin ligand’s number and chemical nature on the biotin–avidin conjugation, Polym. Chem., 5, 1323-1339, https://doi.org/10.1039/C3PY01152F.
  7. Beber, A., Alqabandi, M., Prévost, C., Viars, F., Lévy, D., Bassereau, P., Bertin, A., and Mangenot, S. (2019) Septin‐based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles, Cytoskeleton, 76, 92-103, https://doi.org/10.1002/cm.21480.
  8. Obukhova, P., Tsygankova, S., Chinarev, A., Shilova, N., Nokel, A., Kosma, P., and Bovin, N. (2020) Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology, 30, 395-406, https://doi.org/10.1093/glycob/cwz107.
  9. Ahmad, N., Gabius, H.-J., Kaltner, H., André, S., Kuwabara, I., Liu, F.-T., Oscarson, S., Norberg, T., and Brewer, C. F. (2002) Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3, and -7: evidence for differential binding specificities, Canad. J. Chem., 80, 1096-1104, https://doi.org/10.1139/v02-162.
  10. Shilova, N., Bovin, N., Maltseva, D., Polyakova, S., Sablina, M., Niwa, H., Zakharova, G., Raygorodskaya, M., Bufeeva, L., Belyi, Y., Hushpulian, D., and Tonevitsky, A. (2022) Specificity of viscumin revised. As probed with a printed glycan array, Biochimie, 202, 94-102, https://doi.org/10.1016/j.biochi.2022.08.009.
  11. Tuzikov, A., Chinarev, A., Shilova, N., Gordeeva, E., Galanina, O., Ovchinnikova, T., Schaefer, M., and Bovin, N. (2021) 40 years of glyco-polyacrylamide in glycobiology, Glycoconj. J., 38, 89-100, https://doi.org/10.1007/s10719-020-09965-5.
  12. Obukhova, P., Rieben, R., and Bovin, N. (2007) Normal human serum contains high levels of anti-Galα1-4GlcNAc antibodies, Xenotransplantation, 14, 627-635, https://doi.org/10.1111/j.1399-3089.2007.00436.x.
  13. Duhamel, R. C., and Whitehead, J. S. (1990) Prevention of nonspecific binding of avidin, 201-207, https://doi.org/ 10.1016/0076-6879(90)84275-L.
  14. Nyhlin, N., El-Salhy, M., Sandström, O., and Suhr, O. (1997) Evaluation of immunohistochemical staining of human duodenal endocrine cells after microwave antigen retrieval, Histochem. J., 29, 177-181, https://doi.org/ 10.1023/a:1026441623791.
  15. Kim, S. H., Jung, K. C., Shin, Y. K., Lee, K. M., Park, Y. S., Choi, Y. L., Oh, K. I., Kim, M. K., Chung, D. H., Son, H. G., and Park, S. H. (2002) The enhanced reactivity of endogenous biotin-like molecules by antigen retrieval procedures and signal amplification with tyramine, Histochem. J., 34, 97-103, https://doi.org/10.1023/a:1020954611464.
  16. Shone, C., Ferreira, J., Boyer, A., Cirino, N., Egan, C., Evans, E., Kools, J., and Sharma, S. (2006) The 5th international conference on basic and therapeutic aspects of Botulinum and tetanus neurotoxins. Workshop review: assays and detection, Neurotox. Res., 9, 205-216, https://doi.org/10.1007/BF03033940.
  17. Dundas, C. M., Demonte, D., and Park, S. (2013) Streptavidin–biotin technology: improvements and innovations in chemical and biological applications, Appl. Microbiol. Biotechnol., 97, 9343-9353, https://doi.org/10.1007/s00253-013-5232-z.
  18. Jain, A., and Cheng, K. (2017) The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis, J. Controll. Rel., 245, 27-40, https://doi.org/10.1016/j.jconrel.2016.11.016.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary 1
Download (16KB)
3. Supplementary 2
Download (36KB)
4. Fig. 1. Glycans that showed the best interaction with Alexa 555-labelled streptavidin (at a concentration of 1 µg/ml). The glycan errey consisted of 174 glycans immobilised as polyacrylamide conjugates, Glyc-RAA [11]. The maximum possible fluorescence (OEF) value in this analytical system is about 65,000; signals from ligand-free spots, i.e. background, do not exceed 100 OEF. All monosaccharides except rhamnose are D-pyranoses. Trivial names of oligosaccharides are given in parentheses. See Appendix 1 for more details

Download (173KB)
5. Fig. 2. Interaction of PC-labelled streptavidin (at a concentration of 0.1 µg/ml) with Glyc-PAA conjugates: a - concentration dependence of the interaction with glycoconjugates immobilised in the wells of a 96-well plate; b - dose-dependent inhibition of the interaction of labelled streptavidin with immobilised GlcNAcα-RAA by GlcNAcα-RAA and GlcNAcβ-RAA, and unconjugated GlcNAcα-sp and GlcNAcβ-sp (sp - spacer). OD - optical density

Download (213KB)
6. Fig. 3. Decreasing the concentration of streptavidin when visualising the binding of RCA120 to its ligands did not affect the overall signal intensity or the interaction profile. The Pearson correlation coefficient is 0.92. See Appendix 2 for more details

Download (79KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».