Effect of Sodium and Potassium Nitrites on Lung Respiration and Locomotion of the Mollusk Lymnaea stagnalis (Lymnaeidae, Gastropoda)
- Autores: Alshahrani M.H.1,2, Sidorov A.V1
-
Afiliações:
- Belarusian State University
- College of Applied Science Technology
- Edição: Volume 18, Nº 6 (2025)
- Páginas: 1148-1156
- Seção: ЭКОЛОГИЧЕСКАЯ ФИЗИОЛОГИЯ И БИОХИМИЯ ГИДРОБИОНТОВ
- URL: https://bakhtiniada.ru/0320-9652/article/view/362529
- DOI: https://doi.org/10.7868/S3034522725060135
- ID: 362529
Citar
Resumo
Palavras-chave
Sobre autores
M. Alshahrani
Belarusian State University; College of Applied Science TechnologyMinsk, Belarus; Al Awata, Tripoli, Libya
A. Sidorov
Belarusian State University
Email: sidorov@bsu.by
Minsk, Belarus
Bibliografia
- Дьяконова Т.Л., Реутов В.П. 1998. Влияние нитрита на возбудимость нейронов мозга виноградной улитки // Росс. физиол. журн. им. И.М. Сеченова. Т. 84(11). С. 1264.
- Зотин А.А. 2009а. Рост и энергетический обмен Lymnaea stagnalis (Lymnaeidae, Gastropoda). 1. Ранний постличиночный период // Изв. РАН. Сер. биол. № 5. С. 543.
- Зотин А.А. 2009б. Индивидуальный рост Lymnaea stagnalis (Lymnaeidae, Gastropoda): II. Поздний постличиночный онтогенез // Изв. РАН. Сер. биол. № 6. С. 695.
- Михайлов Р.А., Нестеров В.Н., Рахуба А.В. 2024. Липидный профиль моллюсков Lymnaea stagnalis (Mollusca: Gastropoda) в озерах с разной степенью антропогенного загрязнения // Биология внутр. вод. Т. 17. № 2. C. 256. https://doi.org/10.31857/S0320965224020049
- Реутов В.П., Сорокина Е.Г. 1998. NО-синтазная и нитритредуктазная компоненты цикла оксида азота // Биохимия. Т. 63(7). С. 1029.
- Сидоров А.В. 2003. Влияние температуры на легочное дыхание, оборонительные реакции и локомоторное поведение пресноводного легочного моллюска Lymnaea stagnalis // Журн. высш. нерв. деят. им. И.П. Павлова. Т. 53. № 4. C. 513.
- Шахрани М., Сидоров А.В. 2017. Легочное дыхание и мышечная локомоция Lymnaea stagnalis при действии нитритов натрия и калия в условиях хронического закисления среды обитания // Новости мед.-биол. наук (News of Biomed. Sci). Т. 15(1). C. 5.
- Цыганов В.В., Воронцов Д.Д., Сахаров Д.А. 2004. Фазовая координация локомоции и дыхания у моллюска Lymnaea. Трансмиттерспецифические модификации // Докл. Академии наук. Т. 395(2). С. 274.
- Alonso A., Camargo J.A. 2006. Toxicity of nitrite to three species of freshwater invertebrates // Environ. Toxicol. V. 21(1). P. 90. https://doi.org/10.1002/tox.20155
- Alonso A., Camargo J.A. 2008. Ameliorating effect of chloride on nitrite toxicity to freshwater invertebrates with different physiology: a comparative study between amphipods and planarians // Arch. Environ. Contam. Toxicol. V. 54(2). P. 259. https://doi.org/10.1007/s00244-007-9034-0.
- Amorim J., Abreu I., Rodrigues P. et al. 2019. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies // Sci. Total Environ. V. 669. P. 11. https://doi.org/10.1016/j.scitotenv.2019.03.035
- Benjamin P.R., Winlow W. 1981. The distribution of three wide-acting synaptic inputs to identified neurones in the isolated brain of Lymnaea stagnalis (L.) // Comp. Biochem. Physiol. V. 70A. P. 293. https://doi.org/10.1016/0300-9629(81)90182-1
- Camargo J.A., Alonso A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment // Environ. Int. V. 32(6). P. 831. https://doi.org/10.1016/j.envint.2006.05.002
- Camargo J.A., Alonso A., Salamanca A. 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates // Chemosphere. V. 58(9). P. 1255. https://doi.org/10.1016/j.chemosphere.2004.10.044
- Cruz L., Moroz L.L., Gillette R., Sweedler J.V. 1997. Nitrite and nitrate levels in individual molluscan neurons: singlecell capillary electrophoresis analysis // J. Neurochem. V. 69(1). P. 110. https://doi.org/10.1046/j.1471-4159.1997.69010110.x
- Daam M.A., Ilha P., Schiesari L. 2020. Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species // Ecotoxicology. V. 29(9). P. 1516. https://doi.org/10.1007/s10646-020-02247-8
- Follett R.F., Hatfield J.L. 2001. Nitrogen in the environment: sources, problems, and management // Scientific World J. V. 1 (Suppl. 2). P. 920. https://doi.org/10.1100/tsw.2001.269
- Garcia-Jaramillo M., Beaver L.M., Truong L. et al. 2020. Nitrate and nitrite exposure leads to mild anxiogeniclike behavior and alters brain metabolomic profile in zebrafish // PLoS ONE. V. 15(12). P. e0240070. https://doi.org/10.1371/journal.pone.0240070
- Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. 2022. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO. P. 438.
- Hermann P.M., Bulloch A.G. 1998. Developmental plasticity of respiratory behavior in Lymnaea // Behav. Neurosci. V. 112(3). P. 656. https://doi.org/10.1037//0735-7044.112.3.656
- Hubendick B. 1951. Recent Lymnaeidae: their variation, morphology, taxonomy, nomenclature, and distribution. Kungl. Svenska vetenskaps-akademiens handlingar. Ser. 4. (Bd 3, no. 1). Almqvist & Wiksell. p. 222.
- Jalili D., RadFard M., Soleimani H. et al. 2018. Data on Nitrate-Nitrite pollution in the groundwater resources a Sonqor plain in Iran // Data Brief. V. 20. P. 394. https://doi.org/10.1016/j.dib.2018.08.023
- Jensen F.B. 2009. The role of nitrite in nitric oxide homeostasis: a comparative perspective // Biochim. Biophys. Acta. V. 1787(7). P. 841. https://doi.org/10.1016/j.bbabio.2009.02.010
- Jensen F.B., Rohde S. 2010. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies // Am. J. Physiol. Regul. Integr. Comp. Physiol. V. 298(4). P. R972. https://doi.org/10.1152/ajpregu.00813.2009
- Kaviraj M., Kumar U., Snigdha A., Chatterjee S. 2024. Nitrate reduction to ammonium: a phylogenetic, physiological, and genetic aspects in Prokaryotes and eukaryotes // Arch. Microbiol. V. 206(7). P. 297. https://doi.org/10.1007/s00203-024-04009-0
- Kobayashi S., Sadamoto H., Ogawa H. et al. 2000. Nitric oxide generation around buccal ganglia accompanying feeding behavior in the pond snail, Lymnaea stagnalis // Neurosci. Res. V. 38(1). P. 27. https://doi.org/10.1016/s0168-0102(00)00136-x
- Kodirov S.A. 2011. The neuronal control of cardiac functions in Molluscs // Comp. Biochem. Physiol. A Mol. Integr. Physiol. V. 160(2). P. 102. https://doi.org/10.1016/j.cbpa.2011.06.014
- Lundberg J.O., Weitzberg E. 2022. Nitric oxide signaling in health and disease // Cell. V. 185. P. 2853. https://doi.org/10.1016/j.cell.2022.06.010
- May J.M., Qu Z.-C.,Xia L., Cobb C.E. 2000. Nitrite uptake and metabolism and oxidant stress in human erythrocytes // Am. J. Physiol. Cell Physiol. V. 279(6). P. C1946. https://doi.org/10.1152/ajpcell.2000.279.6.C1946
- Moroz L.L., Gillette R. 1995. From Polyplacophora to Cephalopoda: comparative analysis of nitric oxide signaling in Mollusca // Acta Biol. Hung. V. 46(2–4). P. 169.
- Nitrate and nitrite in drinking-water. 1998. Guidelines for drinking-water quality. Addendum to V. 2. Health criteria and other supporting information. Geneva: Addendum World Health Organization. 294 p. WHO reference number: WHO/EOS/98.1
- Palumbo A. 2005. Nitric oxide in marine invertebrates: a comparative perspective // Comp. Biochem. Physiol. A Mol. Integr. Physiol. V. 142(2). P. 241. https://doi.org/10.1016/j.cbpb.2005.05.043
- Rabalais N.N. 2002. Nitrogen in Aquatic Ecosystems // Ambio. V. 31(2). P. 102. https://doi.org/10.1579/0044-7447-31.2.102
- Rivi V., Benatti C., Colliva C. et al. 2020. Lymnaea stagnalis as model for translational neuroscience research: from pond to bench // Neurosci. Biobehav. Rev. V. 108. P. 602. https://doi.org/10.1016/j.neubiorev.2019.11.020
- Sidorov A.V. 2006. Coordination of locomotor activity of mollusc Lymnaea stagnalis at nutrition: role of the internal medium acid-base balance (pH) // J. Evol. Biochem. Physiol. V. 42(1). P. 43. https://doi.org/10.1134/S0022093006010066
- Sidorov A.V., Maslova G.T. 2008. State of antioxidative protection in central nervous ganglia of the mollusc Lymnaea stagnalis at modulation of activity of the NO-ergic system // J. Evol. Biochem. Physiol. V. 44(5). P. 535. https://doi.org/10.1134/S0022093008050010
- Soucek D.J., Dickinson A. 2012. Acute toxicity of nitrate and nitrite to sensitive freshwater insects, mollusks, and a crustacean // Arch. Environ. Contam. Toxicol. V. 62(2). P. 233. https://doi.org/10.1007/s00244-011-9705-8
- Su Z., Liu T., Guo J., Zheng M. 2023. Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges // Environ. Sci. Technol. V. 57(34). P. 12557. https://doi.org/10.1021/acs.est.3c00636
- Tahon J.P., Maes G., Vinckier C. et al. 1990. The reaction of nitrite with the haemocyanin of the Roman snail (Helix pomatia) // Biochem. J. V. 271(3). P. 779. https://doi.org/10.1042/bj2710779
- Tascedda F., Malagoli D., Accorsi A. et al. 2015. Molluscs as models for translational medicine // Med. Sci. Monit. Basic Res. V. 21. P. 96. https://doi.org/10.12659/MSMBR.894221
- Van Drecht G., Bouwman A.F., Knoop J.M. et al. 2001. Global pollution of surface waters from point and nonpoint sources of nitrogen // Scientific World J. V. 1 (Suppl. 2). P. 632. https://doi.org/10.1100/tsw.2001.326
- Vitousek P.M., Aber J.D., Howarth R.W. et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences // Ecol. Appl. V. 7(3). P. 737. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
- Wang N., Ingersoll C.G., Greer I.E. et al. 2007. Chronic toxicity of copper and ammonia to juvenile freshwater mussels (Unionidae) // Environ. Toxicol. Chem. V. 26(10). P. 2048. https://doi.org/10.1897/06-524R.1
- Weitzberg E., Lundberg J.O.N. 1998. Nonenzymatic nitric oxide production in humans // Nitric Oxide. V. 2(1). P. 1. https://doi.org/10.1006/niox.1997.0162
- Zhang L., Xia T., Liu Q. et al. 2023. Performance of Daphnia simultaneously exposed to nitrite and predation risk: reduced nitrite tolerance and aggravated predationinduced miniaturization // Sci. Total Environ. V. 859 (Pt. 2). P. 160271. https://doi.org/10.1016/j.scitotenv.2022.160271
Arquivos suplementares

