POTOK DIFFERENTsIROVANNYKh METEORITOV NA ZEMLYu
- Authors: Lorents K.A.1, Abdrakhimov A.M.1, Sadilenko D.A.1
-
Affiliations:
- Issue: Vol 59, No 5 (2025)
- Pages: 512–541
- Section: Articles
- URL: https://bakhtiniada.ru/0320-930X/article/view/359237
- DOI: https://doi.org/10.7868/S3034517025050062
- ID: 359237
Cite item
Abstract
Метеориты группы SNC, предположительно, имеют марсианское происхождение. Метеориты группы HED (говардиты, эвкриты, диогениты), предположительно, поступают на Землю с астероида Веста и астероидов ее семейства (вестоидов). На основании анализа распределения падений и находок метеоритов по массам выполнены оценки потока дифференцированных метеоритов групп SNC и HED на Землю. Потоки метеоритов групп SNC (50 шт/год, 70 кг/год) и HED (800 шт/год, 260 кг/год) сопоставимы по массе с потоком лунных метеоритов (90 шт/год, 110 кг/год), несмотря на очень благоприятные условия транспорта выбросов из кратеров Луны на Землю по сравнению с Марсом и поясом астероидов. Количество выбросов из кратеров Марса, потенциально способных достичь Земли, примерно на два порядка больше, чем соответствующее количество выбросов с Луны, образующихся за тоже время. Однако скорость транспорта вещества с Луны на Землю также выше примерно на два порядка. Это, вероятно, основной фактор, нивелирующий потоки вещества с этих тел. Сходство величин потока с Луны и с еще более удаленного тела, Весты, наиболее вероятно связано с образованием на Весте и вестоидах при низкой силе тяжести большей массы кратерных выбросов, переходящих на гелиоцентрические орбиты, пересекающиеся с орбитой Земли. Относительное содержание метеоритов группы HED различных типов в потоке на Землю соответствует данным спектрального картографирования поверхности Весты с космическим аппаратом Dawn. Поток метеоритов группы SNC не соответствует составу поверхности Марса, изученной мареоходами и орбитальными космическими аппаратами. В целом потоки вещества с Марса и Весты, также как и с Луны, не оказывали влияния на состав земной коры во время ее формирования.
About the authors
K. A. Lorents
Author for correspondence.
Email: e-lorenz@yandex.ru
A. M. Abdrakhimov
Email: e-lorenz@yandex.ru
D. A. Sadilenko
Email: e-lorenz@yandex.ru
References
- Базилевский А.Т., Иванов Б.А., Флоренский К.П., Яковлев О.И., Фельдман В.И., Грановский Л.В. Ударные кратеры на Луне и планетах. М.: Наука, 1983. С. 60–65.
- Demidova S.I., Nazarov M.A., Lorenz C.A., Kurat G., Brandstaetter F., Ntaflos T. Chemical composition of lunar meteorites and the lunar crust // Petrology. 2007. V. 15. P. 386–407. https://doi.org/10.1134/S0869591107040042
- Левин Б.Ю. О дроблении астероидов // Метеоритика. 1973. Т. 32. № 1–2. С. 37–42.
- Lorenz K.A., Nazarov M.A., Kurat G., Brandstaetter F., Ntaflos T. Foreign meteoritic material of howardites and polymict eucrites // Petrology. 2007. V. 15. P. 109–125. https://doi.org/10.1134/S0869591107020014
- Nazarov M.A., Badyukov D.D., Lorents K.A., Demidova S.I. The flux of lunar meteorites onto the Earth // Sol. Syst. Res. V. 38. №1. P. 49–58. https://doi.org/10.1023/B:SOLS.0000015155.90844.ae
- Agee C.B., Wilson N.V., McCubbin F.M., Ziegler K., Polyak V.J., Sharp Z.D., Asmerom Y., Nunn M.H., Shaheen R., Thiemens M.H., Steele A., and 5 co-authors. Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034 // Science. 2013. V. 339. № 6121. P. 780–785. doi: 10.1126/science.1228858
- Binzel R.P., Xu S. Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites // Science. 1993. V. 260. № 5105. P. 186–191. https://doi.org/10.1126/science.260.5105.186
- Bland P.A., Smith T.B., Jull A.J.T., Berry F.J., Bevan A.W.R., Cloudt S., Pillinger C.T. The flux of meteorites to the Earth over the last 50 000 years // Mon. Notic. Roy. Astron. Soc. 1996. V. 283. № 2. P. 551–565. https://doi.org/10.1093/mnras/283.2.551
- Bland P.A. Quantification of meteorite infall rates from accumulations in deserts, and meteorite accumulations on Mars // Accretion of extraterrestrial matter throughout Earth’s history / Eds: Peucker-Ehrenbrink B., Schmitz B. N.Y.: Kluwer Acad. / Plenum Publ., 2001. P. 267–303. https://doi.org/10.1007/978-1-4419-8694-8_15.
- Bogard D.D., Johnson P. Martian gases in an Antarctic meteorite? // Science. 1983. V. 221. P. 651–654. https://doi.org/10.1126/science.221.4611.651
- Borovička J., Spurný P., Brown P. Small near-Earth asteroids as a source of meteorites // Asteroids IV / Eds: Michel P., DeMeo F.E., Bottke W.F. Tucson: Univ. Arizona Press, 2015. P. 257–280. https://doi.org/10.2458/azu_uapress_ 9780816532131-ch014 10.48550/arXiv.1502.03307.
- Burbine T.H., Buchanan P.C., Binzel R.P., Bus S.J., Hiroi T., Hinrichs J.L., Meibom A., McCoy T.J. Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences // Meteoritics and Planet. Sci. 2001. V. 36. № 6. P. 761–781. https://doi.org/10.1111/j.1945-5100.2001.tb01915.x
- Burbine T.H., Buchanan P.C., Klima R.L., Binzel R.P. Can formulas derived from pyroxenes and/or HEDs be used to determine the mineralogies of V-type asteroids? // J. Geophys. Res.: Planets. 2018. V. 123. № 7. P. 1791–1803. https://doi.org/10.1029/2018JE005561
- Castle N., Herd C.D.K. Experimental petrology of the Tissint meteorite: Redox estimates, crystallization curves, and evaluation of petrogenetic models // Meteoritics and Planet. Sci. 2017. V. 52. № 1. P. 125–146. https://doi.org/10.1111/maps.12739
- Cartwright J.A., Ott U., Mittlefehldt D.W. The quest for regolithic howardites. Part 2: Surface origins highlighted by noble gases // Geochim. et Cosmochim. Acta. 2014. V. 140. P. 488–508. https://doi.org/10.1016/j.gca.2014.05.033.
- Clayton R.N., Mayeda T.K. Oxygen isotope studies of achondrites // Geochim. et Cosmochim. Acta. 1996. V. 60. № 11. P. 1999–2017. https://doi.org/10.1016/0016-7037(96)00074-9
- De Sanctis M.C., Ammannito E., Capria M.T., Tosi F., Capaccioni F., Zambon F., Carraro F., Fonte S., Frigeri A., Jaumann R., and 13 co-authors. Spectroscopic characterization of mineralogy and its diversity across Vesta // Science. 2012. V. 336. № 6082. P. 697–700. https://doi.org/10.1126/science.1219270
- Drouard A., Gattacceca J., Hutzler A., Rochette P., Braucher R., Bourles D., ASTER Team, Gounelle M., Morbidelli A., Debaille V., Van Ginneken M. The meteorite flux of the past 2 m.y. recorded in the Atacama Desert // Geology. 2019. V. 47. № 7. P. 673–676. https://doi.org/10.1130/G45831.1
- Eugster O. Lunar meteorites Y-82192 and Y-82193: Identical cosmic-ray exposure history and terrestrial age // Abstract, Lunar and Planet. Sci. Conf. 18th. 1987. V. 18. P. 273.
- Farley K.A., Stack K.M., Shuster D.L., Horgan B.H.N., Hurowitz J.A., Tarnas J.D., Simon J.I., Sun V.Z., Scheller E.L., Moore K.R., McLennan S.M., and 97 co-authors. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars // Science. 2022. V. 377. № 6614. https://doi.org/10.1126/science.abo2196.
- Filiberto J. Geochemistry of Martian basalts with constraints on magma genesis // Chemical Geology. 2017. V. 466. P. 1–14. https://doi.org/10.1016/j.chemgeo.2017.06.009
- Freundel M., Schultz L., Reedy R.C. Terrestrial 81Kr-Kr ages of Antarctic meteorites // Geochim. et Cosmochim. Acta. 1986. V. 50. P. 2663–2673. https://doi.org/10.1016/0016-7037(86)90217-6
- Gaffey M.J. Surface lithologic heterogenity of asteroid 4 Vesta // Icarus. 1997. V. 127. P. 130–157. https://doi.org/10.1006/ICAR.1997.5680
- Greenwood R.C., Franchi I.A., Jambon A., Buchanan P.C. Widespread magma oceans on asteroidal bodies in the early Solar System // Nature. 2005. V. 435. № 7044. P. 916–918. https://doi.org/10.1038/nature03612
- Halliday I., Blackwell A.T., Griffin A.A. The flux of meteorites on the Earth’s surface // Meteoritics. 1989. V. 24. P. 173–178. https://doi.org/10.1111/j.1945-5100.1989.tb00959.x
- Halliday I. The present-day flux of meteorites to the Earth // in Accretion of extraterrestrial matter throughout Earth’s history / Eds: Peucker-Ehrenbrink B., Schmitz B. Boston, MA: Springer, 2001. P. 305–318. https://doi.org/10.1007/978-1-4419-8694-8_21.
- Hamilton V.E., Christensen P.R., McSween (Jr) H.Y., Bandfield J.L. Searching for the source regions of Martian meteorites using MGS TES: Integrating Martian meteorites into the global distribution of igneous materials on Mars // Meteoritics and Planet. Sci. 2003. V. 38. № 6. P. 871–885. https://doi.org/10.1111/j.1945-5100.2003.tb00284.x
- Hamilton V.E., Kaplan H.H., Connolly H.C., Goodrich C.A., Abreu N.M., Simon A.A. GRO 95577 (CR1) as a mineralogical analogue for asteroid (101955) Bennu // Icarus. 2022. V. 383. ID 115054. https://doi.org/10.1016/j.icarus.2022.115054
- Harvey R. The origin and significance of Antarctic meteorites // Geochemistry. 2003. V. 63. № 2. P. 93–147. https://doi.org/10.1078/0009-2819-00031
- Head J.N., Melosh H.J, Ivanov B.A. Martian meteorite launch: High-speed ejecta from small craters // Science. 2002. V. 298. № 5599. P. 1752–1756. https://doi.org/10.1126/science.1077483
- Head J.N. The relative abundance of recently-launched meteorites from the Moon and Mars // Lunar and Planet. Sci. Conf. 34th. 2003. Abstract 1961.
- Hughes D.W. On the mass distribution of meteorites and their influx rate // Proc. Symp. Int. Astron. Union. 1979. Cambridge Univ. Press, 1980. V. 90. P. 207–210. https://doi.org/10.1017/S0074180900066742
- Hughes D.W. Meteorite falls and finds: some statistics // Meteoritics. 1981. V. 16. P. 269–281. https://doi.org/10.1111/j.1945-5100.1981.tb00551.x
- Humayun M.A. Planetary science. A unique piece of Mars // Science. 2013. V. 339. № 6121. P. 771–772. https://doi.org/10.1126/science.1232490
- Hutzler A., Gattacceca J., Rochette P., Braucher R., Carro B., Christensen E.J., Cournede C., Gounelle M., Laridhi Ouazaa N., Martinez R., and 3 co-authors. Description of a very dense meteorite collection area in western Atacama: Insight into the long‐term composition of the meteorite flux to Earth // Meteoritics and Planet. Sci. 2016. V. 51. № 3. P. 468–482. https://doi.org/10.1111/maps.12607
- Irving A.J., Bunch T.E., Kuehner S.M., Wittke J.H., Rumble D. Peridotites related to 4 Vesta: Deep crustal igneous cumulates and mantle samples // Lunar and Planet. Sci. Conf. 40th. 2009. Abstract 2466.
- Ito M., Tomioka N., Uesugi M., Yamaguch A., Shirai N., Ohigashi T., Liu M.-C., Greenwood R.C., Kimura M., Imae N., and 94 co-authors. A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample // Nature Astron. 2022. № 6. P. 1163–1171. https://doi.org/10.1038/s41550-022-01745-5.
- Jaumann R., Williams D.A., Buczkowski D.L., Yingst R.A., Preusker F., Hiesinger H., Schmedemann N., Kneissl T., Vincent J.B., Blewett D.T., Buratti B.J., and 32 co-authors. Vesta’s shape and morphology // Science. 2012. V. 336. № 6082. P. 687–690. https://doi.org/10.1126/science.1219122
- Jull A.J.T., Wlotzka F., Palme H., Donahue D.J. Distribution of terrestrial age and petrologic type of meteorites from western Libya // Geochim. et Cosmochim. Acta. 1990. V. 54. № 10. P. 2895–2898. https://doi.org/10.1016/0016-7037(90)90028-J
- Jull A.J.T. Terrestrial ages of meteorites // Meteorites and the Early Solar System. II / Eds: Lauretta D.S., McSween H.Y. Tucson: Univ. Arizona Press, 2006. P. 889–905.
- Jull A.T., McHargue L.R., Bland P.A., Greenwood R.C., Bevan A.W., Kim K.J., LaMotta S.E., Johnson J.A. Terrestrial ages of meteorites from the Nullarbor region, Australia, based on 14C and 14C-10Be measurements // Meteoritics and Planet. Sci. 2010. V. 45. № 8. 1271–1283. https://doi.org/10.1111/j.1945-5100.2010.01289.x
- Jutzi M., Asphaug E., Gillet P., Barrat J.A., Benz W. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions // Nature. 2013. V. 494. № 7436. P. 207–210. https://doi.org/10.1038/nature11892
- Jutzi M., Asphaug E. Mega-ejecta on asteroid Vesta // Geophys. Res. Lett. 2011. V. 38. ID L01102. https://doi.org/10.1029/2010GL045517
- McSween (Jr) H.Y., Taylor G.J., Wyatt M.B. Elemental composition of the Martian crust // Science. 2009. V. 324. P. 736–739. https://doi.org/10.1126/science.1165871
- McSween (Jr) H.Y., Binzel R.P., De Sanctis M.C., Ammannito E., Prettyman T.H., Beck A.W., Reddy V., Le Corre L., Gaffey M.J., McCord T.B., Raymond C.A. Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites // Meteoritics and Planet. Sci. 2013. V. 48. № 11. P. 2090–2104. https://doi.org/10.1111/maps.12108
- McSween (Jr) H.Y. SNC meteorites: Clues to Martian petrologic evolution? // Rev. Geophys. 1985. V. 23. № 4. P. 391–416. https://doi.org/10.1029/rg023i004p00391
- McSween H.Y., Treiman A.H. Martian meteorites // Planetary Materials: Reviews in Mineralogy. V. 36 / Ed. Papike J.J. 1998. P. 6-01 – 6–53. https://doi.org/10.1515/9781501508806-021
- Meteoritical Bulletin Database, 2023. https://www.lpi.usra.edu/meteor/
- Mittlefehldt D.W., Greenwood R.C., Berger E.L., Le L., Peng Z.X., Ross D.K. Eucrite-type achondrites: Petrology and oxygen isotope compositions // Meteoritics and Planet. Sci. 2022. V. 57. № 2. P. 484–526. https://doi.org/10.1111/maps.13730
- Mittlefehldt D.W., McCoy T.J., Goodrich C.A., Kracher A. Non-chondritic meteorites from asteroidal bodies // Planetary Materials: Reviews in Mineralogy V. 36 / Ed. Papike J.J. 1998. P. 4-01 – 4–195. https://doi.org/10.1515/9781501508806-019
- Mittlefehldt D.W. ALH 84001: A cumulate orthopyroxenite member of the martian meteorite clan // Meteoritics. 1994. V. 29. P. 214–221. https://doi.org/10.1111/j.1945-5100.1994.tb00673.x
- Mittlefehldt D.W. Meteorite dunite breccia MIL 03443: A probable crustal cumulate closely related to diogenites from the HED parent asteroid // Lunar and Planet. Sci. Conf. 39th. 2008. LPI Contribution. № 1391. Abstract 1919.
- Miura Y., Nagao K., Sugiura N., Fujitani T., Warren P. Noble gases, 81Kr-Kr exposure ages and 244Pu-Xe ages of six eucrites, Béréba, Binda, Camel Donga, Juvinas, Millbillillie, and Stannern // Geochim. et Cosmochim. Acta. 1998. V. 62. № 13. P. 2369–2387. https://doi.org/10.1016/S0016-7037(98)00118-5
- Mojzsis S.J., Ryder G. Accretion to Earth and Moon ∼3.85 Ga // Accretion of extraterrestrial matter throughout Earth’s history / Eds.: Peucker-Ehrenbrink B., Schmitz B. Boston, MA: Springer, 2001. P. 423–446. https://doi.org/10.1007/978-1-4419-8694-8_21
- Mouginis-Mark P.J., Zimbelman J.R., Crown D.A., Wilson L., Gregg T.K.P. Martian volcanism: Current state of knowledge and known unknowns // Geochemistry. 2022. V. 82. № 4. ID 125886. https://doi.org/10.1016/j.chemer.2022.125886
- Nagao K., Miura Y.N., Sugiura N. Time-dependent variation of eucrite influx to the Earth: An inference from exposure and terrestrial ages of Antarctic and non-Antarctic meteorites // Meteoritics and Planet. Sci. 1996. V. 31. ID A96.
- Neukum G., Basilevsky A.T., Kneissl T., Chapman M.G., Van Gasselt S., Michael G., Jaumann R., Hoffmann H., Lanz J.K. The geologic evolution of Mars: Episodicity of resurfacing events and ages from cratering analysis of image data and correlation with radiometric ages of Martian meteorites // Earth and Planet. Sci. Lett. 2010. V. 294. № 3–4. P. 204–222. https://doi.org/10.1016/j.epsl.2009.09.006
- Nyquist L.E., Bogard D.D., Shih C.-Y., Greshake A., Stöffler D., Eugster O. Ages and geologic histories of Martian meteorites // Space Sci. Rev. 2001. V. 96. P. 105–164. https://doi.org/10.1023/A:1011993105172
- Nyquist L.E., Bogard D.D., Shih C.-Y., Park J., Reese Y.D., Irving A.J. Concordant Rb-Sr, Sm-Nd, and Ar-Ar ages for Northwest Africa 1460: A 346Ma old basaltic shergottite related to “lherzolitic” shergottites // Geochim. et Cosmochim. Acta. 2009. V. 73. № 14. P. 4288–4309. https://doi.org/10.1016/j.gca.2009.04.008
- Nishiizumi K., Caffee M.W., Jull A.J.T., Reedy R.C. Exposure history of lunar meteorites Queen Alexandra Range 93069 and 94269 // Meteoritics and Planet. Sci. 1996. V. 31. № 6. P. 893–896. https://doi.org/10.1111/j.1945-5100.1996.tb02122.x
- Nishiizumi K., Kubik P.W., Elmore D., Reedy R.C., Arnold J.R. Cosmogenic Cl-36 production rates in meteorites and the lunar surface // Proc. Lunar and Planet. Sci. Conf. 19th. 1989. P. 305–312.
- Nishiizumi K., Caffee M.W. Exposure histories of lunar meteorites Dhofar 025, 026, and Northwest Africa 482 // Meteoritics and Planet. Sci. 2001. V. 36. Suppl. ID A148.
- Okada T., Shirai K., Yamamoto Y., Arai T., Ogawa K., Inoue T., Kato M. Elemental composition of asteroid Itokawa by Hayabusa XRF spectrometry // Lunar and Planet. Sci. Conf. 38th. 2007. LPI Contribution. № 1338. Abstract. P. 1287–1288.
- O’Keefe J.D., Ahrens T.J. Meteorite impact ejecta: Dependence of mass and energy lost on planetary escape velocity // Science. 1977. V. 198. № 4323. P. 1249–1251. https://doi.org/10.1126/science.198.4323.1249-a
- Park J., Okazaki R., Nagao K. Noble gas studies on Martian meteorites: Dar Al Gani 476/489, Sayh Al Uhaymir 005/060, Dhofar 019, Los Angeles 001 and Zagami // Lunar and Planet. Sci. Conf. 37th. 2003. Abstract 1213.
- Prettyman T.H., Mittlefehldt D.W., Yamashita N., Lawrence D.J., Beck A.W., Feldman W.C., McCoy T.J., McSween H.Y., Toplis M.J., Titus T.N., Tricarico P., and 9 co-authors. Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith // Science. 2012. V. 338. № 6104. P. 242–246. https://doi.org/10.1126/science.1225354
- Rao M.N., Garrison D.H., Bogard D.D. Xenon Isotope Systematics in Kapoeta and Ancient Solar Activity // Abstract Lunar and Planet. Sci. Conf. 22nd. 1991. P. 1113–1114.
- Reddy V., Nathues A., Le Corre L., Sierks H., Li J.Y., Gaskell R., McCoy T., Beck A.W., Schröder S.E., Pieters C.M., Becker K.J., and 16 co-authors. Color and albedo heterogeneity of Vesta from Dawn // Science. 2012. V. 336. № 6082. P. 700–704. https://doi.org/10.1126/science.1219088
- Schmidt M.E., King P.L., Gellert R., Elliott B., Thompson L., Berger J.A., Bridges J., Campbell J.L., Grotzinger J., Hurowitz J., Leshin L. APXS of first rocks encountered by Curiosity in Gale crater: Geochemical diversity and volatile element (K and Zn) enrichment // Proc. Lunar and Planet. Sci. Conf. 2013. LPI Contribution. № 1719. Abstract. P. 1278.
- Scheller E.L., Razzell Hollis J., Cardarelli E.L., Steele A., Beegle L.W., Bhartia R., Conrad P., Uckert K., Sharma S., Ehlmann B.L., Abbey W.J. and 55 co-authors. Aqueous alteration processes in Jezero crater, Mars – implications for organic geochemistry // Science. 2022. V. 378. № 6624. P. 1105–1110. https://doi.org/10.1126/science.abo5204
- Shima M., Murayama S., Okada A., Yabuki H., Takaoka N. Description, chemical composition and noble gases of the chondrite Nogata // Meteoritics. 1983. V. 18. № 2. P. 87–102. https://doi.org/10.1111/j.1945-5100.1983.tb00580.x
- Strashnov I., Bland P.A., Spurný P., Towner M.C., Gilmour J.D. Times of impacts that deliver samples of Vesta to Earth derived from ultrasensitive 81Kr-Kr cosmic ray exposure age analysis of eucrites // Geochim. et Cosmochim. Acta. 2013. V. 106. P. 71–83. https://doi.org/10.1016/j.gca.2012.11.043
- Suggs R.M., Cooke W.J., Suggs R.J., Swift W.R., Hollon N. The NASA Lunar Impact Monitoring Program // Earth, Moon, and Planets. 2007. V. 102. № 1. P. 293–298. https://doi.org/10.1007/s11038-007-9184-0
- Thomas P.C., Binzel R.P., Gaffey M.J., Storrs A.D., Wells E.N., Zellner B.H. Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results // Science. 1997. V. 277. № 5331. P. 1492–1495. https://doi.org/10.1126/science.277.5331.1492
- Taylor G.J. The composition of asteroid 433 Eros // Planet. Sci. Res. Discoveries. 2002. ID 56.
- Treiman A.H., Gleason J.D., Bogard D.D. The SNC meteorites are from Mars // Planet. and Space Sci. 2000. V. 48. № 12–14. P. 1213–1230. https://doi.org/10.1016/S0032-0633(00)00105-7
- Udry A., Howarth G.H., Herd C.D.K., Day J.M.D., Lapen T.J., Filiberto J. What Martian meteorites reveal about the interior and surface of Mars // J. Geophys. Res.: Planets. 2020. V. 125. ID e2020JE006523. https://doi.org/10.1029/2020JE006523
- Wadhwa M. Solar System time scales from long-lived radioisotopes in meteorites and planetary materials // Treatise on Geochemistry: Meteorites and cosmochemical processes. Second Edition. V. 1 / Eds.: Turekian K.K., Holland H.D. 2014. P. 397–418. https://doi.org/10.1016/B978-0-08-095975-7.00115-7
- Welten K.C., Lindner L., Alderliesten C., Van der Borg K. Terrestrial ages of ordinary chondrites from the Lewis Cliff stranding area, East Antarctica // Meteoritics and Planet. Sci. 1999. V. 34. № 4. P. 559–569. https://doi.org/10.1111/j.1945-5100.199.tb01363.x
- Welten K.C., Nishiizumi K., Finkel R.C., Hillegonds D.J., Jull A.T., Franke L., Schultz L. Exposure history and terrestrial ages of ordinary chondrites from the Dar al Gani region, Libya // Meteoritics and Planet. Sci. 2004. V. 39. № 3. P. 481–498. https://doi.org/10.1111/j.1945-5100.2004.tb00106.x
- Wetherill G.W. Orbital evolution of impact ejecta from Mars // Meteoritics. 1984. V. 19. P. 1–13. https://doi.org/10.1111/j.1945-5100.1984.tb00829.x
- Wittmann A., Korotev R.L., Jolliff B.L., Irving A.J., Moser D.E., Barker I., Rumble (III) D. Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475 // Meteoritics and Planet. Sci. 2015. V. 50. № 2. P. 326–352. https://doi.org/10.1111/maps.12425
- Wood C.A., Ashwal L.D. SNC meteorites – Igneous rocks from Mars // Proc. Lunar and Planet. Sci. Conf. 12th. 1982. V. 2. P. 1359–1375.
- Zolensky M., Bland P., Brown P., Halliday I. Flux of extraterrestrial materials // Meteorites and the early Solar System II. 2006. P. 869–888.
Supplementary files


