SOZDANIE ANALOGA LUNNOGO GRUNTA DLYa EKSPERIMENTA PO SPEKANIYu
- 作者: Agankin I.A.1, Sorokin E.M.1, Matveev E.V.1
-
隶属关系:
- 期: 卷 59, 编号 5 (2025)
- 页面: 473–488
- 栏目: Articles
- URL: https://bakhtiniada.ru/0320-930X/article/view/359234
- DOI: https://doi.org/10.7868/S3034517025050035
- ID: 359234
如何引用文章
详细
Лунный реголит рассматривается в качестве основного сырья для потенциального создания инфраструктуры на Луне. Для опробования методов аддитивных технологий необходимо создание аналогов лунного реголита, имитирующих химико-минералогический состав. Среди земных материалов наиболее близким к реголиту является вулканический пепел. Пепел вулкана Толбачик обладает химическим и минеральным составом, схожим с лунным реголитом. Создан грунт-аналог, обладающий химическим и минералогическим составом, который сочетает в себе как морские, так и материковые особенности состава лунного реголита. Апробация этого аналога была выполнена методом лазерного спекания. Успешные эксперименты по спеканию с использованием тефры вулкана Толбачик позволили создать деталь со средней величиной микротвердости 630 HV.
作者简介
I. Agankin
Email: agapkin@geokhi.ru
E. Sorokin
Email: egorgothim@ya.ru
E. Matveev
编辑信件的主要联系方式.
Email: agapkin@geokhi.ru
参考
- Ким А., Лысенко А.М., Томилина Т.М. Конструкционные материалы из лунного реголита: отработка технологии селективного лазерного сплавления // Машины, технологии и материалы для современного машиностроения: сборник тезисов докладов конференции, посвященной 85-летию Института машиноведения им. А.А. Благонравова РАН, Москва, 23 ноября 2023 г. М.: Типография ИМАШ РАН, 2023. 128–129.
- Abbondanti Sitta L., Lavagna M. 3D printing of Moon highlands regolith simulant // 69th Int. Astronaut. Congress (IAC), Bremen, Germany, 1–5 October 2018. P. 1–7.
- Agapkin I.A. Comparison of the grain size composition of Kamchatka volcanic ashes with lunar regolith // 53rd Lunar and Planet. Sci. Conf. 2022. V. 2678. 1992.
- Avdeiko G.P., Savelyev D.P., Palueva A.A., Popruzhenko S.V. Evolution of the Kurile-Kamchatkan Volcanic Arcs and dynamics of the Kamchatka-Aleutian Junction // Volcanism and Subduction: the Kamchatka Region. Am. Geophys. Union. Geophysical Monograph. Ser. 172. 2007. P. 37–55. https://doi.org/10.1029/172GM04
- Bao C., Zhang D., Wang Q., Cui Y., Feng P. Lunar in situ large-scale construction: Quantitative evaluation of regolith solidification techniques // Engineering. 2024. V. 39. P. 204–221. https://doi.org/10.1016/j.eng.2024.03.004
- Caprio L., Demir A.G., Previtali B., Colosimo B.M. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion // Additive Manufacturing. 2020. V. 32. ID 101029. https://doi.org/10.1016/j.addma.2019.101029
- Cesaretti G., Dini E., De Kestelier X., Colla V., Pambaguian L. Building components for an outpost on the lunar soil by means of a novel 3D printing technology // Acta Astronaut. 2014. V. 93. P. 430–450. https://doi.org/10.1016/j.actaastro.2013.07.034
- Chen Z., Li Z., Li J. et al. 3D printing of ceramics: A review // J. Eur. Ceram. Soc. 2019. V. 39(4). P. 661–687. https://doi.org/10.1016/j.jeurceramsoc. 2018.11.013
- Chen Z., Zhao Y., Chi X., Yan Y., Shen J., Zou M., Zhao S., Liu M., Yao W., Zhang B. and 6 co-authors. Geological timescales’ aging effects of lunar glasses // Sci. Adv. 2023. V. 9 № 45. https://doi.org/10.1126/sciadv.adi6086
- Chen Z., Zhang L., Tang Y. and Chen B. Pioneering lunar habitats through comparative analysis of in-situ concrete technologies: A critical review // Construction and Building Materials. 2024. V. 435. https://doi.org/10.1016/j.conbuildmat.2024.136833
- Exolith Lab (2022) LMS-1 Lunar Highlands Simulant – Fact Sheet, University of Central Florida, CLASS Exolith Lab, Feburary. [Online]. Available: https://cdn.shopify.com/s/files/1/0398/9268/0862/files/lms-1-spec-sheet-July2022.pdf?v=1659561374
- Farries K.W., Visintin P., Smith S.T., van Eyk P. Sintered or melted regolith for lunar construction: State-of-the-art review and future research directions // Construction and Building Materials. 2021. V. 296. https://doi.org/10.1016/j.conbuildmat.2021.123627
- Farries K.W., Visintin P., Smith S.T. Direct laser sintering for lunar dust control: An experimental study of the effect of simulant mineralogy and process parameters on product strength and scalability // Construction and Building Materials. 2022. V. 354. https://doi.org/10.1016/j.conbuildmat.2022.129191
- Fateri M., Gebhardt A. Process parameters development of selective laser melting of lunar regolith for on‐site manufacturing applications // Int. J. Appl. Ceramic Technol. 2015. V. 12. № 1. P. 46–52. https://doi.org/10.1111/ijac.12326
- Fateri M., Gebhardt A., Khosravi M. Experimental investigation of selective laser melting of lunar regolith for in-situ applications // ASME Int. Mech. Engineering Congress and Exposition. 2013. V. 56185. V02AT02A008 (6 p.). https://doi.org/10.1115/IMECE2013-64334
- Ginés-Palomares J.C., Fateri M., Kalhöfer E., Schubert T., Meyer L., Kolsch N., Lipińska M.B., Davenport R., Imhof B., Waclavicek R., Sperl M., Makaya A. & Günster J. Laser melting manufacturing of large elements of lunar regolith simulant for paving on the Moon // Sci. Rep. 2023. V. 13. № 1. https://doi.org/10.1038/s41598-023-42008-1
- Global Volcanism Program, 2024. [Database] Volcanoes of the World (v. 5.2.1; 3 Jul 2024). Distributed by Smithsonian Institution, compiled by Venzke E. https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2
- Goulas A., Binner J.G., Engstrøm D.S., Harris R.A., Friel R.J. Mechanical behaviour of additively manufactured lunar regolith simulant components // Proc. Institution Mechan. Engineers. Part L: J. Materials: Design and Applications. 2019. V. 233. № 8. P. 1629–1644. https://doi.org/10.1177/1464420718777932
- Goulas A., Friel R.J. 3D printing with moondust // Rapid Prototyping J. 2016. V. 22. № 6. P. 864–870. https://doi.org/10.1108/RPJ-02-2015-0022
- Granier J., Cutard T., Pinet P., Le Maoult Y., Chevrel S., Sentenac T., Favier J.J. Selective laser melting of partially amorphous regolith analog for ISRU lunar applications // Acta Astronaut. 2025. V. 226. P. 66–77. https://doi.org/10.1016/j.actaastro.2024.10.024
- Harvey B. Soviet and Russian Lunar Exploration. Berlin: Springer, 2007. 317 p. https://doi.org/10.1007/978-0-387-73976-2
- Hatch F.H., Wells A.K., Wells M.K. Petrology of the Igneous Rocks. London: Thomas Murby & Co, 1972. 551 p. https://doi.org/10.1017/S0016756800038073
- Isachenkov M., Chugunov S., Akhatov I., Shishkovsky I. Regolith-based additive manufacturing for sustainable development of lunar infrastructure – An overview // Acta Astronaut. 2021. V. 180. P. 650–678. https://doi.org/10.1016/j.actaastro.2021.01.005
- Korotev R.L. Geochemistry of grain-size fractions of soils from the Taurus-Littrow valley floor // Proc. 7th Lunar Sci. Conf., Houston, Tex., March 15–19. V. 1. (A77-34651 15-91). N. Y.: Pergamon Press, 1976. P. 695–726.
- Korotev R.L., Haskin L.A., Lindstrom M.M. A synthesis of lunar highlands compositional data // Proc. 11th Lunar and Planet. Sci. Conf., Houston, TX, March 17–21. V. 1. (A82-22251 09-91). N. Y.: Pergamon Press, 1980. P. 395–429.
- Laul J.C., Papike J.J. The lunar regolith: Comparative chemistry of the Apollo sites // Proc. 11th Lunar and Planet. Sci. Conf. Houston, TX, March 17–21. V. 2. (A82-22296 09-91). N. Y.: Pergamon Press,1980. P. 1307–1340.
- Laul J.C., Schmitt R.A. Chemical composition of Apollo 15, 16 and 17 samples // Proc. 4th Lunar Sci. Conf. 1973b. P. 1349–1367.
- Laul J.C., Vaniman D.T., Papike J.J., Simon S. Chemistry and petrology of size fractions of Apollo 17 deep drill core 70009–70006 // Proc. 9th Lunar and Planet. Sci. Conf. Houston, Tex., March 13–17, 1978. V. 2. (A79-39176 16-91). N. Y.: Pergamon Press, 1978a. 2065–2097.
- Liu T., Michael G., Zuschneid W., Wünnemann K., Oberst J. Lunar megaregolith mixing by impacts: Evaluation of the non-mare component of mare soils // Icarus. 2021. V. 358. ID 114206. https://doi.org/10.1016/j.icarus.2020.114206
- Liu Y., Taylor L.A. Characterization of lunar dust and a synopsis of available lunar simulants // Planet. and Space Sci. 2011. V. 59. № 14. P. 1769–1783. https://doi.org/10.1016/j.pss.2010.11.007
- Long-Fox J.M., Landsman Z.A., Easter P.B., Millwater C.A., Britt D.T. Geomechanical properties of lunar regolith simulants LHS-1 and LMS-1 // Adv. Space Res. 2023. V. 71. № 12. P. 5400–5412. https://doi.org/10.1016/j.asr.2023.02.034
- Marov M.Y., Slyuta E.N. Early steps toward the lunar base deployment: Some prospects // Acta Astronaut. 2021. V. 181. P. 28–39. https://doi.org/10.1016/j.actaastro.2021.01.002
- McKay D.S., Heiken G., Basu A., Blanford G., Simon S., Reedy R., Bevan M.F., Papike J. The lunar regolith // Lunar Sourcebook. 1991. V. 567. P. 285–356.
- Neumann J., Ernst M., Taschner P., Perwas J., Kalms R., Griemsmann T., Eismann T., Bernhard R., Dyroey P., Wessels P., Grefen B., Baasch J., Stapperfend S., Linke S., Stoll E., Overmeyer L., Kracht D., Kaierle S. The MOONRISE-payload as proof of principle for mobile selective laser melting of lunar regolith // Int. Conf. Space Optics – ICSO. 2022. 2023. V. 12777. P. 2706–2714. https://doi.org/10.1117/12.2691126
- Papike J.J., Simon S.B., Laul J.C. The lunar regolith: Chemistry, mineralogy, and petrology // Rev. Geophys. Space Phys. 1982. V. 20. P. 761–826. https://doi.org/10.1029/RG020i004p00761
- Papike J.J., Simon S.B., White C., Laul J.C. The relationship of the lunar regolith <10 mm fraction and agglutinates. Part I: A model for agglutinate formation and some indirect supportive evidence // Proc. 12th Lunar and Planet. Sci. Conf. Houston, TX. March 16–20, 1981. V. 12B. P. 409–420.
- Pieters C.M. Mare basalt types on the front side of the Moon // Proc. 9th Lunar and Planet. Sci. Conf. Houston, Tex., March 13–17, 1978. V. 3. (A79-39253 16-91). N. Y.: Pergamon Press, 1978. P. 2825–2849.
- Portnyagin M., Duggen S., Hauff F., Mironov N., Bindeman I., Thirlwall M. & Hoernle K. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems // J. Volcanology and Geothermal Res. 2015. V. 307. P. 133–155. https://doi.org/10.1016/j.jvolgeores.2015.08.015
- Ray C.S., Reis S.T., Sen S., O’Dell J.S. JSC-1A lunar soil simulant: Characterization, glass formation, and selected glass properties // J. Non-Crystalline Solids. 2010. V. 356. № 44–49. P. 2369–2374. https://doi.org/10.1016/j.jnoncrysol.2010.04.049
- Reitz B., Lotz C., Gerdes N., Linke S., Olsen E., Pflieger K., Sohrt S., Ernst M., Taschner P., Neumann J., Stoll E., Overmeyer L. Additive manufacturing under lunar gravity and microgravity // Microgravity Sci. and Technol. 2021. V. 33. P. 1–12. https://doi.org/10.1007/s12217-021-09878-4
- Schrader C., Rickman D., Mclemore C., Fikes J., Wilson S., Stoeser D., Butcher A., Botha P. Extant and extinct lunar regolith simulants: modal analyses of NU-LHT-1M and -2M, OB-1, JSC-1, JSC-1A and -1AF, FJS-/1 and MLS-1, NASA // Proc. Planet. and Terrestr. Mining Symp. (PTMSS) / Northern Centre for Advanced Technology, Inc. (NORCAT). Montreal, QC, Canada. Jun 9–11, 2008.
- Simon S.B., Papike J.J., Laul J.C. The lunar regolith: Comparative studies of the Apollo and Luna sites. Petrology of soils from Apollo 17, Luna 16, 20, and 24 // Proc. 12th Lunar and Planet. Sci. Conf. Houston, TX. March 16-20, 1981. V. 12B. Section 1. (A82-31677 15-91). New York and Oxford: Pergamon Press, 1982a. P. 371–388.
- Simon S.B., Papike J.J., Laul J.C. The Apollo 14 regolith: Petrology of cores 14210/14211 and 14220 and soils 14141, 14148, and 14149 // J. Geophys. Res.: Solid Earth. 1982b. V. 87. № S01. P. A232–A246. https://doi.org/10.1029/JB087iS01p0A232
- Slyuta E.N., Grishakina E.A., Makovchuk V.Y., Agapkin I.A. Lunar soil-analogue VI-75 for large-scale experiments // Acta Astronaut. 2021. V. 187. P. 447–457. https://doi.org/10.1016/j.actaastro.2021.06.047
- Slyuta E.N., Grishakina E.A., Makovchuk V.Y., Uvarova A.V., Agapkin I.A., Mironov D.D., Nikitin M.S., Voznesensky E.A. Martian soil-analogue VI-M1 for large-scale geotechnical experiments // Planet. and Space Sci. 2024. V. 251. https://doi.org/10.1016/j.pss.2024.105959
- Slyuta E.N., Sorokin E.M., Agapkin I.A., Grishakina E.A., Makovchuk V.Yu., Mironov D.D., Turchinskaya O.I., Tretyukhina O.S., Uvarova A.V. Natural lunar test site on Earth // The 13th Moscow Sol. Syst. Symp. 13M-S3. 2022. P. 164–166.
- Smith M., Craig D., Herrmann N., Mahoney E., Krezel J., McIntyre N., Goodliff K. The Artemis program: an overview of NASA’s activities to return humans to the Moon // IEEE Aerospace Conf. 2020. P. 1–10. https://doi.org/10.1109/AERO47225.2020.9172323
- Steinberg G.S. Comparative morphology of lunar craters and rings and some volcanic formations in Kamchatka // Icarus. 1968. V. 8. № 1–3. P. 387–403. https://doi.org/10.1016/0019-1035(68)90087-0
- Stoeser D., Rickman D., Wilson S. Design and specifications for the highland regolith prototype simulants NU-LHT-1M and-2M. Report NASA/TM-2010-216438. 2011.
- Stroup T.L. Lunar bases of the 20th Century: What might have been // J. British Interplanet. Soc. 1995. V. 48. № 1. P. 3–10.
- Suhaizan M.S., Tran P., Exner A., Falzon B.G. Regolith sintering and 3D printing for lunar construction: An extensive review on recent progress // Progress in Additive Manufacturing. 2024. V. 9. № 6. P. 1715–1736. https://doi.org/10.1007/s40964-023-00537-1
- Taylor G.J., Warren P., Ryder G., Delano J., Pieters C., Lofgren G. Lunar rocks // Lunar Sourcebook, A User’s Guide to the Moon. 1991. P. 183–284.
- Taylor S.R. The Moon re-examined // Geochim. et Cosmochim. Acta. 2014. V. 141. P. 670–676. https://doi.org/10.1016/j.gca.2014.06.031
- Vaniman D.T., Labotka T.C., Papike J.J., Simon S.B., Laul J.C. The Apollo 17 drill core: Petrologic systematics and the identification of a possible Tycho component // Proc. 10th Lunar and Planet. Sci. Conf., Houston, Tex., March 19–23, 1979. V. 2. (A80-23617 08-91) N.Y.: Pergamon Press, 1979. P. 1185–1227.
- Walker R.J., Papike J.J. The Apollo 15 regolith – Chemical modeling and mare/highland mixing // Proc. 12th Lunar and Planet. Sci. Conf., Houston, TX, March 16-20, 1981. V. 12B. Section 1. (A82-31677 15-91). New York and Oxford: Pergamon Press, 1982. P. 509–517.
- Xu F., Ou J. Promoting international cooperation on the International Lunar Research Station: Inspiration from the ITER // Acta Astronaut. 2023. V. 203. P. 341–350. https://doi.org/10.1016/j.actaastro.2022.12.004
- Xu J., Sun X., Cao H., Tang H., Ma H., Song L., Li X., Duan X., Liu J. 3D printing of hypothetical brick by selective laser sintering using lunar regolith simulant and ilmenite powders // 9th Int. Symp. Adv. Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology. 2019. V. 10842. P. 38–48. https://doi.org/10.1117/12.2505911
- Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L. Review of selective laser melting: Materials and applications // Appl. Phys. Rev. 2015. V. 2. № 4. https://doi.org/10.1063/1.4935926
- Zheng Y., Wang S., Ziyuan O., Yongliao Z., Jianzhong L., Chunlai L., Xiongyao L., Junming F. CAS-1 lunar soil simulant // Adv. Space Res. 2009. V. 43. № 3. P. 448–454. https://doi.org/10.1016/j.asr.2008.07.006
补充文件

