ORGANIChESKOE VEShchESTVO V STRUKTURE TITANA: MODELI VNUTRENNEGO STROENIYa
- Authors: Dunaeva A.N.1, Kronrod V.A.1, Kuskov O.L.1
-
Affiliations:
- Issue: Vol 59, No 5 (2025)
- Pages: 441-472
- Section: Articles
- URL: https://bakhtiniada.ru/0320-930X/article/view/359233
- DOI: https://doi.org/10.7868/S3034517025050027
- ID: 359233
Cite item
Abstract
Титан, крупнейший спутник Сатурна, уникален в отношении своего состава, строения и истории формирования. Титан выделяется среди других тел Солнечной системы благодаря своей плотной азотно-метановой атмосфере с разнообразными органическими соединениями и поверхности, покрытой жидкими углеводородами. На основе космохимических и геофизических данных, уравнений состояния метеоритного вещества и Н2О (вода, водные льды) построены модели внутреннего строения Титана, сложенного веществом углистых (С1/СМ) и обыкновенных (L/LL) хондритов, при различном содержании органического материала (ОМ) низкой (ρОМ ~ 1.3–1.4 г/см3) и высокой (1.4 < ρОМ < 2.2 г/см3) плотности. В отсутствии ОМ реализуются трехслойные модели частично дифференцированного спутника с внешней водно-ледяной оболочкой, промежуточной каменно-ледяной мантией и внутренним С1/СМ или L/LL ядром. Наличие примеси ОМ с плотностью 1.3–1.8 г/см3 в хондритовом веществе Титана обеспечивает возможность перехода от трехслойных частично дифференцированных моделей спутника к двухслойным моделям полной дифференциации (без каменно-ледяной мантии) – структурам, свободным от ограничений на таяние мантийных льдов. Строение полностью дифференцированного Титана в общем случае включает: водно-ледяную оболочку с обязательным внутренним океаном и слоем частично подплавленных высокобарных льдов V–VI и центральное С1/СМ или L/LL хондритовое ядро радиусом ~2100 км. Такие модели без примеси ОМ не удовлетворяют условиям сохранения массы и момента инерции спутника; их согласованность с геофизическими ограничениями обусловлена присутствием ОМ в количестве 10–22 мас. % и 20–28 мас. % в С1/СМ и L/LL ядрах соответственно. Модели Титана с высокоплотным ОМ (ρОМ > 1.8 г/см3) не предполагают разделение ледяной и каменной компоненты, спутник остается дифференцированным частично. Полученные оценки содержания органического материала в Титане согласуются с таковыми для ряда других ледяных лун планет-гигантов и большинства объектов пояса Койпера, образовавшихся за снеговой линией. Это может указывать на общий резервуар материала-предшественника во внешней части Солнечной системы, а также позволяет предполагать потенциальную генетическую связь между космическими телами этого региона, что требует дальнейшего изучения.
About the authors
A. N. Dunaeva
Author for correspondence.
Email: dunaeva.an@gmail.com
V. A. Kronrod
Email: va_kronrod@mail.ru
O. L. Kuskov
Email: ol_kuskov@mail.ru
References
- Кусков О.Л., Дорофеева В.А., Кронрод В.А., Макалкин А.Б. Системы Юпитера и Сатурна. Формирование, состав и внутреннее строение крупных спутников. М.: Изд-во ЛКИ, 2009. 576 с.
- Alexander C.M.O’D. A common origin for organics in meteorites and comets: was it interstellar? // Proc. Int. Astron. Union, IAU Symp. “The Molecular Universe”. 2011. V. 7. № S280. P. 288–301. https://doi.org/10.1017/s1743921311025051
- Alexander C.M.O’D., Cody G.D., De Gregorio B.T., Nittler L.R., Stroud R.M. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N // Chemie der Erde – Geochemistry. 2017. V. 77. P. 227–256. https://doi.org/10.1016/j.chemer.2017.01.007
- Alibert Y., Mousis O. Formation of Titan in Saturn’s subnebula: constraints from Huygens probe measurements // Astron. and Astrophys. 2007. V. 465. P. 1051–1060. https://doi.org/10.1051/0004-6361:20066402
- Altwegg K. Cometary chemistry // Phys. Today. 2022. V. 75. № 1. P. 34–41. https://doi.org/10.1063/pt.3.4920
- Anderson S., Vernazza P., Brož M. Formation regions of CM and CI/CM chondrites: Saturn versus the primordial trans-Uranian disk // Proc. Ann. Meeting French Soc. Astron. and Astrophys. (SF2A). 2024. P. 413–417.
- Baland R.M., Tobie G., Lefevre A., Van Hoolst T. Titan’s internal structure inferred from its gravity field, shape, and rotation state // Icarus. 2014. V. 237. P. 29–41. https://doi.org/10.1016/j.icarus.2014.04.007
- Bardyn A., Baklouti D., Cottin H., Fray N., Briois C., Paquette J., Stenzel O., Engrand C., Fischer H., and 17 co-authors. Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta // Mon. Notic. Roy. Astron. Soc. 2017. V. 469. Suppl_2. P. S712–S722. https://doi.org/10.1093/mnras/stx2640
- Barnes J.W., Turtle E.P., Trainer M.G., Lorenz R.D., MacKenzie S.M., Brinckerhoff W.B., Cable M.L., Ernst C.M., Freissinet C., and 17 co-authors. Science goals and objectives for the Dragonfly Titan rotorcraft relocatable lander // Planet. Sci. J. 2021. V. 2. № 4. ID 130. https://doi.org/10.3847/psj/abfdcf
- Barr A.C., Canup R.M. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites // Icarus. 2008. V. 198. № 1. P. 163–177. https://doi.org/10.1016/j.icarus.2008.07.004
- Barr A.C., Citron R.I., Canup R.M. Origin of a partially differentiated Titan // Icarus. 2010. V. 209. P. 858–862. https://doi.org/10.1016/j.icarus.2008.07.004
- Barr A.C., Dobos V., Kiss L.L. Interior structures and tidal heating in the TRAPPIST-1 planets // Astron. and Astrophys. 2018. V. 613. ID A37. https://doi.org/10.1051/0004-6361/201731992
- Bertaux J.-L., Lallement R. Diffuse interstellar bands carriers and cometary organic material // Mon. Notic. Roy. Astron. Soc. 2017. V. 469. P. S646–S660. https://doi.org/10.1093/mnras/stx2231
- Bhatia G.K., Sahijpal S. Thermal evolution of trans‐Neptunian objects, icy satellites, and minor icy planets in the early Solar System // Meteoritics and Planet. Sci. 2017. V. 52. № 12. P. 2470–2490. https://doi.org/10.1111/maps.12952
- Bland P.A., Cressey G., Menzies O.N. Modal mineralogy of carbonaceous chondrites by X‐ray diffraction and Mössbauer spectroscopy // Meteoritics and Planet. Sci. 2004. V. 39. № 1. P. 3–16. https://doi.org/10.1111/j.1945-5100.2004.tb00046.x
- Brouwers M.G., Vazan A., Ormel C.W. How cores grow by pebble accretion-I. Direct core growth // Astron. and Astrophys. 2018. V. 611. ID A65. https://doi.org/10.1051/0004-6361/201731824
- Brownlee D., Joswiak D., Matrajt G. Overview of the rocky component of Wild 2 comet samples: Insight into the early Solar System, relationship with meteoritic materials and the differences between comets and asteroids // Meteoritics and Planet. Sci. 2012. V. 47. № 4. P. 453–470. https://doi.org/10.1111/j.1945-5100.2012.01339.x
- Buseck P.R., Hua X. Matrices of carbonaceous chondrite meteorites // Annu. Rev. Earth and Planet. Sci. 1993. V. 21. P. 255–305. https://doi.org/10.1146/annurev.ea.21.050193.001351
- Čadek O., Kalousová K., Kvorka J., Sotin C. The density structure of Titan’s outer ice shell // Icarus. 2021. V. 364. ID 114466. https://doi.org/10.1016/j.icarus.2021.114466
- Campbell I.H., O’Neill H.St.C. Evidence against a chondritic Earth // Nature. 2012. V. 483. P. 553–558. https://doi.org/10.1038/nature10901
- Castillo-Rogez J.C., Lunine J.I. Evolution of Titan’s rocky core constrained by Cassini observations // Geophys. Res. Lett. 2010. V. 37. ID L20205. https://doi.org/10.1029/2010gl044398
- Charnay B., Tobie G., Lebonnois S., Lorenz R.D. Gravitational atmospheric tides as a probe of Titan’s interior: Application to Dragonfly // Astron. and Astrophys. 2022. V. 658. ID A108. https://doi.org/10.1051/0004-6361/202141898
- Cioria C., Mitri G. Model of the mineralogy of the deep interior of Triton // Icarus. 2022. V. 388. ID 115234. https://doi.org/10.1016/j.icarus.2022.115234
- Consolmagno G.J., Britt D.T., Macke R.J. The significance of meteorite density and porosity // Geochemistry. 2008. V. 68. № 1. P. 1–29. https://doi.org/10.1016/j.chemer.2008.01.003
- Consolmagno G.J., Macke R.J., Rochette P., Britt D.T., Gattacceca J. Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers // Meteoritics and Planet. Sci. 2006. V. 41. № 3. P. 331–342. https://doi.org/10.1111/j.1945-5100.2006.tb00466.x
- Corlies P., Hayes A.G., Birch S.P.D., Lorenz R., Stiles B.W., Kirk R., Poggiali V., Zebker H., Iess L. Titan’s topography and shape at the end of the Cassini mission // Geophys. Res. Lett. 2017. V. 44. № 23. P. 11,754–11,761. https://doi.org/10.1002/2017gl075518
- Coyette A., Baland R.M., Van Hoolst T. Variations in rotation rate and polar motion of a non-hydrostatic Titan // Icarus. 2018. V. 307. P. 83–105. https://doi.org/10.1016/j.icarus.2018.02.003
- Czechowski L., Łosiak A. Early thermal history of Rhea: The role of serpentinization and liquid state convection // Acta Geophysica. 2016. V. 64. № 6. P. 2677–2716. https://doi.org/10.1515/acgeo-2016-0064
- Czechowski L., Witek P. Comparison of early evolutions of Mimas and Enceladus // Acta Geophysica. 2015. V. 63. № 3. P. 900–921. https://doi.org/10.1515/acgeo-2015-0024
- d’Ischia M., Manini P., Martins Z., Remusat L., Alexander C.M.O’D., Puzzarini C., Barone V., Saladino R. Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life? // Phys. Life Rev. 2021. V. 37. P. 65–93. https://doi.org/10.1016/j.plrev.2021.03.002
- De Gregorio B.T., Stroud R.M., Nittler L.R., Alexander C.M.O’D., Kilcoyne A.D., Zega T.J. Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation // Geochim. et Cosmochim. Acta. 2010. V. 74. № 15. P. 4454–4470. https://doi.org/10.1016/j.gca.2010.05.010
- DeMeo F.E., Carry B. Solar System evolution from compositional mapping of the asteroid belt // Nature. 2014. V. 505. № 7485. P. 629–634. https://doi.org/10.1038/nature12908
- Dorofeeva V.A. Genesis of volatile components at Saturn’s regular satellites. Origin of Titan’s atmosphere // Geochem. Int. 2016. V. 54. № 1. P. 7–26. https://doi.org/10.1134/s0016702916010031
- Dorofeeva V.A. The role of radial transport in forming minor bodies of the outer Solar System // Sol. Syst. Res. 2022. V. 56. № 3. P. 168–182. https://doi.org/10.1134/s0038094622020034
- Dunaeva A.N., Antsyshkin D.V., Kuskov O.L. Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices // Sol. Syst. Res. 2010. V. 44. № 3. P. 202–222. https://doi.org/10.1134/s0038094610030044
- Dunaeva A.N., Kronrod V.A. Kuskov O.L. Models of Titan with water-ice shell, rock-ice mantle, and constraints on the rock-iron component composition // Dokl. Earth Sci. 2014. V. 454. P. 89–93. https://doi.org/10.1134/s1028334x14010188
- Dunaeva A.N., Kronrod V.A., Kuskov O.L. Physico-chemical models of the internal structure of partially differentiated Titan // Geochem. Int. 2016. V. 54. № 1. P. 27–47. https://doi.org/10.1134/s0016702916010043
- Durante D., Hemingway D.J., Racioppa P., Iess L., Stevenson D.J. Titan’s gravity field and interior structure after Cassini // Icarus. 2019. V. 326. P. 123–132. https://doi.org/10.1016/j.icarus.2019.03.003
- Durham W.B., Pathare A.V., Stern L.A., Lenferink H.J. Mobility of icy sand packs, with application to Martian permafrost // Geophys. Res. Lett. 2009. V. 36. № 23. ID L23203. https://doi.org/10.1029/2009gl040392
- Fegley B. Chemical and physical processing of presolar materials in the Solar nebula and the implications for preservation of presolar materials in comets // Space Sci. Rev. 1999. V. 90. P. 239–252. https://doi.org/10.1007/978-94-011-4211-3_22
- Flynn G.J., Keller L.P., Feser M., Wirick S., Jacobsen C. The origin of organic matter in the solar system: Evidence from the interplanetary dust particles // Geochim. et Cosmochim. Acta. 2003. V. 67. № 24. P. 4791–4806. https://doi.org/10.1016/j.gca.2003.09.001
- Fortes A.D. Titan’s internal structure and the evolutionary consequences // Planet. and Space Sci. 2012. V. 60. P. 10–17. https://doi.org/10.1016/j.pss.2011.04.010
- Friedson A.J., Stevenson D.J. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites // Icarus. 1983. V. 56. № 1. P. 1–14. https://doi.org/10.1016/0019-1035(83)90124-0
- Fries M., Steele A. Graphite whiskers in CV3 meteorites // Meteoritics and Planet. Sci. 2008. V. 320. № 5872. P. 91–93. https://doi.org/10.1126/science.1153578
- Gail H.P., Trieloff M. Spatial distribution of carbon dust in the early solar nebula and the carbon content of planetesimals // Astron. and Astrophys. 2017. V. 606. ID A16. https://doi.org/10.1051/0004-6361/201730480
- Gao P., Stevenson D.J. Nonhydrostatic effects and the determination of icy satellites’ moment of inertia // Icarus. 2013. V. 226. № 2. P. 1185–1191. https://doi.org/10.1016/j.icarus.2013.07.034
- Gilliam A.E., Lerman A. Evolution of Titan׳ s major atmospheric gases and cooling since accretion // Planet. and Space Sci. 2014. V. 93. P. 41–53. https://doi.org/10.1016/j.pss.2014.07.005
- Glavin D.P., Alexander C.M.O’D., Aponte J.C., Dworkin J.P., Elsila J.E., Yabuta H. The origin and evolution of organic matter in carbonaceous chondrites and links to their parent bodies // Primitive Meteorites and Asteroids. 2018. V. 3. P. 205–271. https://doi.org/10.1016/b978-0-12-813325-5.00003-3
- Goossens S., van Noort B., Mateo A., Mazarico E., van der Wal W. A low-density ocean inside Titan inferred from Cassini data // Nat. Astron. 2024. V. 8. P. 846–855. https://doi.org/10.1038/s41550-024-02253-4
- Gounelle M. The asteroid–comet continuum: In search of lost primitivity // Elements. 2011. V. 7. № 1. P. 29–34. https://doi.org/10.2113/gselements.7.1.29
- Grasset O., Sotin C., Deschamps F. On the internal structure and dynamics of Titan // Planet. and Space Sci. 2000. V. 48. № 7–8. P. 617–636. https://doi.org/10.1016/s0032-0633(00)00039-8
- Hemingway D., Nimmo F., Zebker H., Iess L. A rigid and weathered ice shell on Titan // Nature. 2013. V. 500. № 7464. P. 550–552. https://doi.org/10.1038/nature12400
- Hussmann H., Choblet G., Lainey V., Matson D.L., Sotin C., Tobie G., Van Hoolst T. Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites // Space Sci. Rev. 2010. V. 153. № 1–4. P. 317–348. https://doi.org/10.1007/s11214-010-9636-0
- Idini B., Nimmo F. Resonant stratification in Titan’s global ocean // Planet. Sci. J. 2024. V. 5. № 1. ID 15. https://doi.org/10.3847/psj/ad11ef
- Iess L., Jacobson R.A., Ducci M., Stevenson D.J., Lunine J.I., Armstrong J.W., Asmar S.W., Racioppa P., Rappaport N.J., Tortora P. The tides of Titan // Science. 2012. V. 337. № 6093. P. 457–459. https://doi.org/10.1126/science.1219631
- Iess L., Rappaport N.J., Jacobson R.A., Racioppa P., Stevenson D.J., Tortora P., Armstrong J.W., Asmar S.W. Gravity field, shape, and moment of inertia of Titan // Science. 2010. V. 327. № 5971. P. 1367–1369. https://doi.org/10.1126/science.1182583
- Johansen A., Lambrechts M. Forming planets via pebble accretion // Ann. Rev. Earth and Planet. Sci. 2017. V. 45. P. 359–387. https://doi.org/10.1146/annurev-earth-063016-0226
- Journaux B., Brown J.M., Pakhomova A., Collings I.E., Petitgirard S., Espinoza P., Boffa Ballaran T., Vance S.D., Ott J., Cova F., Garbarino G., Hanfland M. Holistic approach for studying planetary hydrospheres: Gibbs representation of ices thermodynamics, elasticity, and the water phase diagram to 2,300 MPa // J. Geophys. Res.: Planets. 2020a. V. 125. ID e2019JE006176. https://doi.org/10.1029/2019je006176
- Journaux B., Kalousová K., Sotin C., Tobie G., Vance S., Saur J., Bollengier O., Noack L., Rückriemen-Bez T., Van Hoolst T., Soderlund K.M., Brown J.M. Large ocean worlds with high-pressure ices // Space Sci. Rev. 2020b. V. 216. ID 7. https://doi.org/10.1007/s11214-019-0633-7
- Kalousová K., Sotin C. Dynamics of Titan’s high-pressure ice layer // Earth and Planet. Sci. Lett. 2020. V. 545. ID 116416. https://doi.org/10.1016/j.epsl.2020.116416
- Kaplan H.H., Simon A.A., Hamilton V.E., Thompson M.S., Sandford S.A., Barucci M.A., Lauretta D.S. Composition of organics on asteroid (101955) Bennu // Astron. and Astrophys. 2021. V. 653. ID L1. https://doi.org/10.1051/0004-6361/202141167
- Kikuchi S., Shibuya T., Abe M., Uematsu K. Experimental chondrite–water reactions under reducing and low-temperature hydrothermal conditions: Implications for incipient aqueous alteration in planetesimals // Geochim. et Cosmochim. Acta. 2022. V. 319. P. 151–167. https://doi.org/10.1016/j.gca.2021.11.006
- King A.J., Schofield P.F., Howard K.T., Russell S.S. Modal mineralogy of CI and CI-like chondrites by X-ray diffraction // Geochim. et Cosmochim. Acta. 2015. V. 165. P. 148–160. https://doi.org/10.1016/j.gca.2015.05.038
- Kronrod E.V., Kronrod V.A., Kuskov O.L. Modeling of the thermal evolution of the cores of icy giant satellites // IOP Conf. Ser.: Mater. Sci. Eng. 2021. V. 1191. ID 012019. doi: 10.1088/1757-899X/1191/1/012019.
- Kronrod V.A., Dunaeva A.N., Gudkova T.V., Kuskov O.L. Matching of models of the internal structure and thermal regime of partially differentiated Titan with gravity field // Sol. Syst. Res. 2020. V. 54. № 5. P. 405–419. https://doi.org/10.1134/s0038094620050044
- Kronrod V.A., Kuskov O.L. Chemical differentiation of the Galilean satellites of Jupiter: 1. Structure of the ice-water shell of Callisto // Geochem. Int. 2003. V. 41. № 9. P. 881–896.
- Kronrod V.A., Kuskov O.L. Chemical differentiation of the Galilean satellites of Jupiter: 4. Isochemical models for the compositions of Io, Europa, and Ganymede // Geochem. Int. 2006. V. 44. P. 529–546. https://doi.org/10.1134/s0016702906060012
- Kuramoto K., Matsui T. Formation of a hot proto‐atmosphere on the accreting giant icy satellite: Implications for the origin and evolution of Titan, Ganymede, and Callisto // J. Geophys. Res.: Planets. 1994. V. 99. № E10. P. 21183–21200. https://doi.org/10.1029/94je01864
- Kuskov O.L., Kronrod V.A. Core sizes and internal structure of the Earth’s and Jupiter’s satellites // Icarus. 2001. V. 151. P. 204–227. https://doi.org/10.1006/icar.2001.6611
- Kuskov O.L., Kronrod V.A. Models of the internal structure of Callisto // Sol. Syst. Res. 2005a. V. 39. P. 283–301. https://doi.org/10.1007/s11208-005-0043-0
- Kuskov O.L., Kronrod V.A. Internal structure of Europa and Callisto // Icarus. 2005b. V. 177. P. 550–569. https://doi.org/10.1016/j.icarus.2005.04.014
- Kuskov O.L., Kronrod V.A. Resemblance and difference between constitution of the Moon and Io // Planet. and Space Sci. 2000. V. 48. P. 717–726. https://doi.org/10.1016/s0032-0633(00)00034-9
- Lambrechts M., Johansen A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs // Astron. and Astrophys. 2014. V. 572. ID A107. https://doi.org/10.1051/0004-6361/201424343
- Langevin Y., Kissel J., Bertaux J.-L., Chassefière, E. First statistical analysis of 5000 mass spectra of cometary grains obtained by PUMA I (Vega l) and PIA (Giotto) impact ionization mass spectrometers in the compressed modes // Astron. and Astrophys. 1987. V. 187. P. 761–766. https://doi.org/10.1007/978-3-642-82971-0_130
- Lauretta D.S., Connolly (Jr) H.C., Aebersold J.E., Alexander C.M.O’D., Ballouz R.L., Barnes J.J., and 48 co-authors, and OSIRIS‐REx Sample Analysis Team. Asteroid (101955) Bennu in the laboratory: Properties of the sample collected by OSIRIS‐Rex // Meteoritics and Planet. Sci. 2024. V. 59. № 9. P. 2453–2486. https://doi.org/10.1111/maps.14227
- Lefevre A., Tobie G., Choblet G., Cadek O. Structure and dynamics of Titan’s outer icy shell constrained from Cassini data // Icarus. 2014. V. 237. P. 16–28. https://doi.org/10.1016/j.icarus.2014.04.006
- Levasseur-Regourd A.C., Agarwal J., Cottin H., Engrand C., Flynn G., Fulle M., Gombosi T., Langevin Y., Lasue J. Mannel T., and 4 co-authors. Cometary dust // Space Sci. Rev. 2018. V. 214. № 3. ID 64. https://doi.org/10.1007/s11214-018-0496-3
- Lodders K., Osborne R. Perspectives on the comet-asteroid-meteorite link // Space Sci. Rev. 1999. V. 90. № 1. P. 289–297. https://doi.org/10.1007/978-94-011-4211-3_26
- Lopes R.M.C., Wall S.D., Elachi C., Birch S.P.D., Corlies P., Coustenis A., Hayes A.G., Hofgartner J.D., Janssen M.A., Kirk R.L., and 38 co-authors. Titan as revealed by the Cassini radar // Space Sci. Rev. 2019. V. 215. № 4. ID 33. https://doi.org/10.1007/s11214-019-0598-6
- Lorenz R.D., Le Gall A. Schumann resonance on titan: A critical Re-assessment // Icarus. 2020. V. 351. ID 113942. https://doi.org/10.1016/j.icarus.2020.113942
- Lorenz R.D. Thermodynamics of geysers: Application to Titan // Icarus. 2002. V. 156. № 1. P. 176–183. https://doi.org/10.1006/icar.2001.6779
- Lorenz R.D., Turtle E.P., Barnes J.W., Trainer M.G., Adams D.S., Hibbard K.E., Sheldon C.Z., Zacny K., Peplowski P.N. and 9 co-authors. Dragonfly: A rotorcraft lander concept for scientific exploration at Titan // Johns Hopkins APL Technical Digest. 2018. V. 34. № 3. P. 374–387.
- Lu Q., Ali I., Li J. Prediction of properties from first principles with quantitative accuracy: six representative ice phases // New J. Chem. 2020. V. 44. P. 21012–21020. https://doi.org/10.1039/d0nj04687f
- Lunine J.L. Origin of water ice in the Solar System // Meteorites and the Early Solar System II / Eds: Lauretta D.S., McSween (Jr) H.Y. Tucson: Univ. Arizona Press, 2006. P. 309–320. https://doi.org/10.2307/j.ctv1v7zdmm.21
- Macke R.J., Consolmagno G.J., Britt D.T. Density, porosity, and magnetic susceptibility of carbonaceous chondrites // Meteoritics and Planet. Sci. 2011. V. 46. № 12. P. 1842–1862. https://doi.org/10.1111/j.1945-5100.2011.01298.x
- MacKenzie S.M., Birch S.P., Hörst S., Sotin C., Barth E., Lora J.M., Trainer M.G., Corlies P., Malaska M.J., Sciamma-O’Brien E., and 23 co-authors. Titan: Earth-like on the outside, ocean world on the inside // Planet. Sci. J. 2021. V. 2. № 3. ID 112. https://doi.org/10.3847/psj/abf7c9
- Makalkin A.B., Dorofeeva V.A. Accretion disks around Jupiter and Saturn at the stage of regular satellite formation // Sol. Syst. Res. 2014. V. 48. № 1. P. 62–78. https://doi.org/10.1134/s0038094614010067
- Malamud U., Prialnik D. Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies // Icarus. 2015. V. 246. P. 21–36. https://doi.org/10.1016/j.icarus.2014.02.027
- Marov M.Y. Astronomical and cosmochemical aspects of the life origin problem // Astron. Rep. 2023. V. 67. P. 764–789. https://doi.org/10.1134/s1063772923080073
- Matrajt G., Messenger S., Brownlee D., Joswiak D. Diverse forms of primordial organic matter identified in interplanetary dust particles // Meteoritics and Planet. Sci. 2012. V. 47. № 4. P. 525–549. https://doi.org/10.1111/j.1945-5100.2011.01310.x
- McDonough W.F., Sun S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
- McKinnon W.B., Simonelli D.P., Schubert G. Composition, internal structure, and thermal evolution of Pluto and Charon // Pluto and Charon. Tucson: Univ. Arizona Press, 1997. P. 295–344.
- McKinnon W.B., Stern S.A., Weaver H.A., Nimmo F., Bierson C.J., Cook J.C., Grundy W.M., Cruikshank D.P., Parker A.H., Moore J.M., and 4 co-authors, the New Horizons Geology, Geophysics & Imaging and Composition Theme Teams. Origin of the Pluto–Charon system: Constraints from the New Horizons flyby // Icarus. 2017. V. 287. P. 2–11. https://doi.org/10.1016/j.icarus.2016.11.019
- McSween H.Y., Bennett M.E., Jarosewich E. The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry // Icarus. 1991. V. 90. № 1. P. 107–116. https://doi.org/10.1016/0019-1035(91)90072-2
- Militzer B., Hubbard W.B., Vorberger J., Tamblyn I., Bonev S.A. A massive core in Jupiter predicted from first-principles simulations // Astrophys. J. 2008. V. 688. № 1. P. L45–L48. https://doi.org/10.1086/594364
- Miller K.E., Glein C.R., Waite J.H. Contributions from accreted organics to Titan’s atmosphere: new insights from cometary and chondritic data // Astrophys. J. 2019. V. 871. № 1. ID 59. https://doi.org/10.3847/1538-4357/aaf561
- Mitri G., Meriggiola R., Hayes A., Lefevre A., Tobie G., Genova A., Zebker H. Shape, topography, gravity anomalies and tidal deformation of Titan // Icarus. 2014. V. 236. P. 169–177. https://doi.org/10.1016/j.icarus.2014.03.018
- Mitri G., Showman A.P. Thermal convection in ice-I shells of Titan and Enceladus // Icarus. 2008. V. 193. P. 387–396. https://doi.org/10.1016/j.icarus.2007.07.016
- Monteux J., Tobie G., Choblet G., Le Feuvre M. Can large icy moons accrete undifferentiated? // Icarus. 2014. V. 237. P. 377–387. https://doi.org/10.1016/j.icarus.2014.04.041
- Morbidelli A., Lambrechts M., Jacobson S., Bitsch B. The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores // Icarus. 2015. V. 258. P. 418–429. https://doi.org/10.1016/j.icarus.2015.06.003
- Mueller S., McKinnon W.B. Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution // Icarus. 1988. V. 76. № 3. P. 437–464. https://doi.org/10.1016/0019-1035(88)90014-0
- Nagel K., Breuer D., Spohn T. A model for the interior structure, evolution, and differentiation of Callisto // Icarus. 2004. V. 169. № 2. P. 402–412. https://doi.org/10.1016/j.icarus.2003.12.019
- Néri A., Guyot F., Reynard B., Sotin C. A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn // Earth and Planet. Sci. Lett. 2020. V. 530. ID 115920. https://doi.org/10.1016/j.epsl.2019.115920
- Neumann W., Kruse A. Differentiation of Enceladus and retention of a porous core // Astrophys. J. 2019. V. 882. № 1. ID 47. https://doi.org/10.3847/1538-4357/ab2fcf
- Nguyen A.N., Mane P., Keller L.P., Piani L., Abe Y., Aléon J., Alexander C.M.O’D., Amari S., Amelin Y. and 83 co-authors. Abundant presolar grains and primordial organics preserved in carbon-rich exogenous clasts in asteroid Ryugu // Sci. Adv. 2023. V. 9. № 28. ID adh1003. https://doi.org/10.1126/sciadv.adh1003
- Nimmo F., Bills B.G. Shell thickness variations and the long wavelength topography of Titan // Icarus. 2010. V. 208. P. 896–904. https://doi.org/10.1016/j.icarus.2010.02.020
- Nimmo F., Pappalardo R.T. Ocean worlds in the outer Solar System // J. Geophys. Res.: Planets. 2016. V. 121. № 8. P. 1378–1399. https://doi.org/10.1002/2016je005081
- Nogueira E., Brasser R., Gomes R. Reassessing the origin of Triton // Icarus. 2011. V. 214. № 1. Р. 113–130. https://doi.org/10.1016/j.icarus.2011.05.003
- Nuth J.A., Johnson N.M., Ferguson F.T., Carayon A. Gas/solid carbon branching ratios in surface‐mediated reactions and the incorporation of carbonaceous material into planetesimals // Meteoritics and Planet. Sci. 2016. V. 51. № 7. P. 1310–1322. https://doi.org/10.1111/maps.12666
- Nuth J.A., Kimura Y., Lucas C., Ferguson F., Johnson N.M. The formation of graphite whiskers in the primitive solar nebula // Astrophys. J. Lett. 2010. V. 710. № 1. P. L98–L101. https://doi.org/10.1088/2041-8205/710/1/l98
- O’Rourke J.G., Stevenson D.J. Stability of ice/rock mixtures with application to a partially differentiated Titan // Icarus. 2014. V. 227. P. 67–77. https://doi.org/10.1016/j.icarus.2013.09.010
- Peale S.J., Canup R.M. The origin of the natural satellites // Treatise on Geophysics, 2nd edition. V. 10 / Ed.: Schubert G. 2015, Oxford: Elsevier. P. 559–604. https://doi.org/10.1016/b978-0-444-53802-4.00177-9
- Prinn R.G., Fegley (Jr) B. Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae-Implications for satellite composition // Astrophys. J. 1981. V. 249. P. 308–317. https://doi.org/10.1086/159289
- Raymond S.N., Izidoro A. Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion // Icarus. 2017. V. 297. P. 134–148. https://doi.org/10.1016/j.icarus.2017.06.030
- Reynard B., Sotin C. Carbon-rich icy moons and dwarf planets // Earth and Planet. Sci. Lett. 2023. V. 612. ID 118172. https://doi.org/10.1016/j.epsl.2023.118172
- Reynard B., Sotin C. Density of Uranus moons: Evidence for ice/rock fractionation during planetary accretion // Icarus. 2025. V. 425. ID 116354. https://doi.org/10.1016/j.icarus.2024.116354
- Ruedas T. Radioactive heat production of six geologically important nuclides // Geochemistry, Geophysics, Geosystems. 2017. V. 18. № 9. P. 3530–3541. https://doi.org/10.1002/2017gc006997
- Scott H.P., Williams Q., Ryerson F.J. Experimental constraints on the chemical evolution of large icy satellites // Earth and Planet. Sci. Lett. 2002. V. 203. № 1. P. 399–412. https://doi.org/10.1016/s0012-821x(02)00850-6
- Sohl F., Solomonidou A., Wagner F.W., Coustenis A., Hussmann H., Schulze-Makuch D. Structural and tidal models of Titan and inferences on cryovolcanism // J. Geophys. Res.: Planets. 2014. V. 119. № 5. P. 1013–1036. https://doi.org/10.1002/2013je004512
- Sotin C., Kalousová K., Tobie G. Titan’s interior structure and dynamics after the Cassini-Huygens mission // Ann. Rev. Earth and Planet. Sci. 2021. V. 49. P. 579–607. https://doi.org/10.1146/annurev-earth-072920-052847
- Spitzer F., Kleine T., Burkhardt C., Hopp T., Yokoyama T., Abe Y., Aléon J., Alexander C.M.O’D., Amari S., Amelin Y., and 81 co-authors. The Ni isotopic composition of Ryugu reveals a common accretion region for carbonaceous chondrites // Sci. Adv. 2024. V. 10. № 39. ID adp2426. https://doi.org/10.1126/sciadv.adp2426
- Tobie G., Gautier D., Hersant F. Titan’s bulk composition constrained by Cassini-Huygens: implication for internal outgassing // Astrophys. J. 2012. V. 752. № 2. ID 125. https://doi.org/10.1088/0004-637x/752/2/125
- Tobie G., Lunine J.I., Monteux J., Mousis O., Nimmo F. The origin and evolution of Titan // Titan: Interior, Surface, Atmopshere and Space Environment / Eds: Muller-Wordag I., Griffith C.A., Lellouch E., Cravens T.E. Cambridge UK: Cambirdge Univ. Press, 2014a. P. 29–262. https://doi.org/10.1017/cbo9780511667398.004
- Tobie G., Teanby N.A., Coustenis A., Jaumann R., Raulin F., Schmidt J., Carrasco N., Coates A.J., Cordier D., De Kok R., and 21 co-authors. Science goals and mission concept for the future exploration of Titan and Enceladus // Planet. and Space Sci. 2014b. V. 104. P. 59–77. https://doi.org/10.1016/j.pss.2014.10.002
- Tomeoka K., McSween H.Y., Buseck P.R. Mineralogical alteration of CM carbonaceous chondrites: A review // Proc. NIPR Symp. Antarct. Meteorites. 1989. V. 2. P. 221–234.
- Trinh K.T., Bierson C.J., O’Rourke J.G. Slow evolution of Europa’s interior: Metamorphic ocean origin, delayed metallic core formation, and limited seafloor volcanism // Sci. Adv. 2023. V. 9. № 24. ID adf3955. https://doi.org/10.1126/sciadv.adf3955
- Vinogradoff V., Le Guillou C., Bernard S., Binet L., Cartigny P., Brearley A.J., Remusat L. Paris vs. Murchison: Impact of hydrothermal alteration on organic matter in CM chondrites // Geochim. et Cosmochim. Acta. 2017. V. 212. P. 234–252. https://doi.org/10.1016/j.gca.2017.06.009
- Wakita S., Sekiya M. Thermal evolution of icy planetesimals in the solar nebula // Earth, Planets and Space. 2011. V. 63. № 12. P. 1193–1206. https://doi.org/10.5047/eps.2011.08.012
- Walsh K.J., Morbidelli A., Raymond S.N., O’Brien D.P., Mandell A.M. A low mass for Mars from Jupiter’s early gas-driven migration // Nature. 2011. V. 475. P. 206–209. https://doi.org/10.1038/nature10201
- Wasson J.T., Kallemeyn G.W. Compositions of chondrites // Phil. Trans. Roy. Soc. London. Ser. A. 1988. V. 325. № 1587. P. 535–544. https://doi.org/10.1098/rsta.1988.0066
- Weissman P., Morbidelli A., Davidsson B., Blum J. Origin and evolution of cometary nuclei // Space Sci. Rev. 2020. V. 216. ID 6. https://doi.org/10.1007/s11214-019-0625-7
- Yabuta H., Cody G.D., Engrand C., Kebukawa Y., De Gregorio B., Bonal L., Remusat L., Stroud R., Quirico E., Nittler L., and 120 co-authors. Macromolecular organic matter in samples of the asteroid (162173) Ryugu // Science. 2023. V. 379. № 6634. ID abn9057. https://doi.org/10.1126/science.abn9057
- Zandanel A., Hellmann R., Truche L., Roddatis V., Mermoux M., Choblet G., Tobie G. Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds // Nature Astron. 2022. V. 6. № 5. P. 554–559. https://doi.org/10.1038/s41550-022-01613-2
- Zolotov M.Y. The composition and structure of Ceres’ interior // Icarus. 2020. V. 335. ID 113404. https://doi.org/10.1016/j.icarus.2019.113404
Supplementary files


