Experimental modelling of imaging artifacts in ultrasound examination of human lungs
- Authors: Sorokin S.D.1, Ryabkov M.V.1, Tsysar S.A.1, Sapozhnikov O.A.1, Khokhlova V.A.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Physics
- Issue: Vol 71, No 3 (2025)
- Pages: 479-488
- Section: АКУСТИКА ЖИВЫХ СИСТЕМ. БИОМЕДИЦИНСКАЯ АКУСТИКА
- URL: https://bakhtiniada.ru/0320-7919/article/view/306579
- DOI: https://doi.org/10.31857/S0320791925030148
- EDN: https://elibrary.ru/jundyo
- ID: 306579
Cite item
Abstract
To determine the nature of artifacts on the ultrasound image of human lungs (so-called B-lines), experimental phantoms were created consisting of a silicone layer for acoustic imitation of intercostal muscles, a layer formed with fine-pored anti-burn sponge imitating healthy or edematous lung tissue, a sponge fragment, a mandarin juice pouch and a drop of ultrasound gel imitating the structures of the lung fabrics. Ultrasonic (US) images were recorded by a linear ultrasonic probe L7-4 connected to a Verasonics V-1 ultrasound scanner. Additionally, an image of a tangerine juice sac located on the surface of the water was constructed based on the synthesized aperture method using a focused piezoelectric transducer Olympus V307. The resulting echograms were compared with images recorded in clinical cases of pulmonary pathologies. It is shown that the appearance of artificial B-lines is associated with the effects of multiple reverberation in liquid-filled structures imitating lung tissue, while their brightness and width on the echogram depend on the characteristic size of the internal structure of the phantom.
About the authors
S. D. Sorokin
Lomonosov Moscow State University, Faculty of Physics
Email: srknstepan@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia
M. V. Ryabkov
Lomonosov Moscow State University, Faculty of Physics
Email: srknstepan@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia
S. A. Tsysar
Lomonosov Moscow State University, Faculty of Physics
Email: srknstepan@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia
O. A. Sapozhnikov
Lomonosov Moscow State University, Faculty of Physics
Email: srknstepan@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia
V. A. Khokhlova
Lomonosov Moscow State University, Faculty of Physics
Author for correspondence.
Email: srknstepan@gmail.com
Leninskie Gory 1, Moscow, 119991 Russia
References
- Макаренков А.П., Рудницкий А.Г. Возможности диагностики легочных патологий при двухканальной обработке дыхательных шумов человека // Акуст. журн. 1995. Т. 41. № 2. С. 272–277.
- Khokhlova T.D., Thomas G.P., Hall J., Steinbock K., Thiel J., Cunitz B.W., Bailey M.R., Anderson L., Kessler R., Hall M.K., et.al. Development of an automated ultrasound signal indicator of lung interstitial syndrome // J. Ultrasound Med. 2024. V. 43(3). P. 513–523.
- Mika S., Gola W., Gil-Mika M., Wilk M., Misiołek H. Overview of artificial intelligence in point-of-care ultrasound. New horizons for respiratory system diagnoses // Anaesthesiol Intensive Ther. 2024. V. 56(1). P. 1–8.
- Mento F., Demi L. Dependence of lung ultrasound vertical artifacts on frequency, bandwidth, focus and angle of incidence: An in vitro study // J. Acoust. Soc. Am. 2021. V. 150(6). P. 4075.
- Raju S., Ghosh S., Mehta A.C. Chest CT signs in pulmonary disease: a pictorial review // Chest. 2017. V. 151(6). P. 1356–1374.
- Gruden J.F., Naidich D.P., Machnicki S.C., Cohen S.L., Girvin F., Raoof S. An algorithmic approach to the interpretation of diffuse lung disease on chest CT imaging: a theory of almost everything // Chest. 2020. V. 157(3). P. 612–635.
- Volpicelli G. Lung ultrasound B-lines in interstitial lung disease: moving from diagnosis to prognostic stratification // Chest. 2020. V. 158(4). P. 1323–1324.
- Berce V., Tomazin M., Gorenjak M., Berce T., Lovrenčič B. The usefulness of lung ultrasound for the aetiological diagnosis of community-acquired pneumonia in children // Sci Rep. 2019. V. 9(1). P. 17957.
- Di Serafino M., Notaro M., Rea G., Iacobellis F., Paoli V.D., Acampora C., Ianniello S., Brunese L., Romano L., Vallone G. The lung ultrasound: facts or artifacts? In the era of COVID-19 outbreak // Radiol. Med. 2020. V. 125. P. 738–753.
- Lichtenstein D. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill // Chest. 2015. V. 147(6). P. 1659–1670.
- Митьков В.В., Сафонов Д.В., Митькова М.Д., Алехин М.Н., Катрич А.Н., Кабин Ю.В., Ветшева Н.Н., Худорожкова Е.Д., Лахин Р.Е., Кадрев А.В., и др. Консенсусное заявление РАСУДМ об ультразвуковом исследовании легких в условиях пандемии COVID-19 (версия 2) // Ультразвуковая и функциональная диагностика. 2020. Т. 1. С. 46–77.
- Lichtenstein D., Mézière G., Biderman P., Gepner A., Barré O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome // Am. J. Respir. Crit. Care Med. 1997. V. 156(5). P. 1640–1646.
- Soldati G., Smargiassi A., Demi L., Inchingolo R. Artifactual lung ultrasonography: it is a matter of traps, order, and disorder // Appl. Sci. 2020. V. 10(5). P. 1570.
- Demi M., Prediletto R., Soldati G., Demi L. Physical mechanisms providing clinical information from ultrasound lung images: hypotheses and early confirmations // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020. V. 67(3). P. 612–623.
- Kameda T., Kamiyama N., Kobayashi H., Kanayama Y., Taniguchi N. Ultrasonic B-line-like artifacts generated with simple experimental models provide clues to solve key issues in B-lines // Ultrasound Med. Biol. 2019. V. 45(7). P. 1617–1626.
- Soldati G., Giunta V., Sher S., Melosi F., Dini C. “Synthetic” comets: a new look at lung sonography // Ultrasound Med. Biol. 2011. V. 37(11). P. 1762–1770.
- Hansell D.M., Bankier A.A., MacMahon H., McLoud T.C., Müller N.L., Remy J. Fleischner Society: glossary of terms for thoracic imaging // Radiology. 2008. V. 246(3). P. 697–722.
- Hyde D.M., Tyler N.K., Putney L.F., Singh P., Gundersen H.J. Total number and mean size of alveoli in mammalian lung estimated using fractionator sampling and unbiased estimates of the Euler characteristic of alveolar openings // The Anatomical Record. 2004. V. 277A(1). P. 216–226.
- Jingwen Q., Maofa G., Xiaoyu W. Harmonic analysis based on Blackman–Harris self-convolution window // Applied Mechanics and Materials. 2013. V. 330. P. 977–980.
- Sadjadi S.O., Hasan T., Hansen J.H.L. Mean Hilbert Envelope Coefficients (MHEC) for robust speaker recognition // 13th Annual Conf. of the Int. Speech Communication Association 2012, INTERSPEECH 2012. V. 2. P. 1694–1697.
Supplementary files
