Сравнительный анализ численного метода и методов машинного обучения задачи определения температуры легированного смазочного слоя с экспериментальными данными

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящей статье проведена сравнительная характеристика методов машинного обучения и численного метода задачи определения температуры легированного смазочного слоя с экспериментальными данными. На основе метода прогонки решено одномерное уравнение теплопроводности Фурье с граничными и начальными условиями. В результате сравнения численных и прогнозных данных с экспериментами можно сделать вывод о том, что модели машинного обучения лучше предсказывают результаты по сравнению с численными данными.

Об авторах

А. Тохметова

Институт машиноведения им. А.А. Благонравова РАН

Email: aygerim.tokhmetova@mail.ru
Россия, Москва

А. Ю. Албагачиев

Институт машиноведения им. А.А. Благонравова РАН

Автор, ответственный за переписку.
Email: aygerim.tokhmetova@mail.ru
Россия, Москва

Список литературы

  1. Zheng Z., Guo Z., Liu W. et al. Low friction of superslippery and superlubricity // A review. Friction. 2023. V. 11. P. 1121.
  2. Meng Y., Xu J., Ma L. et al. A review of advances in tribology // In 2020–2021. Friction. 2022. V. 10. P. 1443.
  3. Буяновский И.А., Хрущов М.М., Самусенко В.Д. Алмазоподобные углеродные покрытия: трибологическое поведение при граничной смазке. Часть II. Смазка химически модифицированным слоем // Материаловедение. 2021. № 10. С. 3.
  4. Kim B.K., Hyun J.S., Kim Y.H. et al. Effect of Boundary Layer Modification and Enhanced Thermal Characteristics on Tribological Performance of Alumina Nanofluids Dispersed in Lubricant Oil // Experimental Techniques. 2022. № 47. P. 737.
  5. Duan L., Li J., Duan H. Nanomaterials for lubricating oil application // A review. Friction. 2023. V. 11. P. 647.
  6. Тохметова А.Б., Михеев А.В., Тананов М.А. Исследования трибологических свойств моторного масла с содержанием фуллеренов // Проблемы машиностроения и надежности машин. 2022. № 4. С. 108.
  7. Тухтаров А.Р., Хузин А.А., Джемилев У.М. Фуллеренсодержащие смазочные материалы: достижения и перспективы (обзор) // Нефтехимия. 2020. № 1. С. 125.
  8. Strohmaier A., Waters A. Analytic properties of heat equation solutions and reachable sets // Math. Z. 2022. V. 302. P. 259.
  9. Hancock J.T., Khoshgoftaar T.M. CatBoost for big data: an interdisciplinary review // J Big Data. 2020. V. 7. P. 94.
  10. Шрам В.Г., Агафонов Е.Д., Лысянников А.В., Лысянникова Н.Н. Прогноз термоокислительных свойств смазочного масла с использованием методов машинного обучения // Известия Тульского государственного университета. Технические науки. 2018. № 12. С. 576.

Дополнительные файлы


© А. Тохметова, А.Ю. Албагачиев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».