Хлорирование соединений циркония

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данной работе рассмотрены основные способы хлорирования природных соединений циркония, оценена эффективность существующих технологий и рассмотрены наиболее перспективные методы развития отрасли. В настоящее время во всем мире активно проводятся исследования и разработки новых, энергоэффективных способов переработки цирконий‒содержащих как природных соединений, так и техногенных отходов. Действующие гидрометаллургические способы переработки цирконий‒содержащих материалов обладают рядом существенных недостатков, таких как многостадийность, низкая степень и интенсивность извлечения циркония, высокий расход реагентов, или необходимость длительного захоронения в случае переработки отходов ядерной энергетики. Наиболее перспективными с технико‒экономической точки зрения представляются пирохимические способы переработки циркония в расплавленных солях благодаря большей интенсивности процесса и возможности утилизировать более широкий спектр соединений. Хлорные методы металлургии являются основой производства большинства редкоземельных элементов, а для таких элементов, как титан, цирконий, и гафний, не имеют приемлемых альтернатив и являются единственным способом получения высокочистого металла. Чаще всего хлорирование осуществляют в расплавах на основе хлоридов щелочных и щелочноземельных металлов, в пределах 1000 °С. Хлорирование оксидов чистым хлором без использования восстановителя невозможно, вплоть до температуры 827 °С и выше, из‒за положительных значений энергии Гиббса реакции, поэтому для осуществления процесса используют восстановители, в частности различные формы углерода, однако данный метод затрудняет соблюдение стехиометрии загружаемых реагентов, что приводит к накоплению углерода в зоне реакции. Основными препятствиями к развитию идеи использования четыреххлористого углерода стали высокая стоимость, токсичность и ограниченная растворимость в солевых расплавах, что делает его более пригодным для непосредственного хлорирования оксидов в парах CCl4. Более перспективным, с точки зрения энергозатрат, технологичности и общей эффективности процесса представляется хлорирование с использованием в качестве восстановителя элементарной серы. Для повышения эффективности хлорирования возможно использование комбинированного метода с применением системы хлор‒углерод‒сера. Предлагаемый метод позволяет снизить температуру процесса и синтезировать необходимые соединения непосредственно в реакторе, что позволит снизить число технологических операций и повысить рентабельность процесса.

Полный текст

Доступ закрыт

Об авторах

А. А. Филатов

Институт высокотемпературной электрохимии УрО РАН

Автор, ответственный за переписку.
Email: Aleksander.F.A@yandex.ru
Россия, Екатеринбург

Список литературы

  1. Filatov A.A., Suzdaltsev A.V., Zaikov Yu.P. Comparative analysis of modern methods for producing Al–Zr alloys // Non‒ferrous metals. 2021. № 4. P. 78–86.
  2. Filatov A.A., Suzdaltsev A.V., Zaikov Yu.P. Modifying Ability of an Al–Zr Master Alloy // Russian Metallurgy (Metally). 2021. № 8. P. 1036–1039.
  3. Filatov A.A., Suzdaltsev A.V., Zaikov Yu.P. Production of Al‒Zr Master Alloy by Electrolysis of the KF‒NaF‒AlF₃‒ZrO₂ Melt: Modifying Ability of the Master Alloy // Metallurgical and Materials Transactions B. 2021. 52. № 6. P. 4206–4214.
  4. Дробот Д.В., Детков П.Г., Чернышова О.В. История создания хлорной металлургии редких и цветных металлов: первая публикация и современное состояние // Вопросы атомной науки и техники. Сер.: Материаловедение и новые материалы. 2022. № 5(116). С. 27–40.
  5. Xu L., Xiao Y., Sandwijk A., Xu Q., Yang Y. Production of nuclear grade zirconium: A review // Journal of Nuclear Materials. 2015. 466. P. 21–28.
  6. Морозов И.С. Применение хлора в металлургии редких и цветных металлов: Физико‒химические основы. М.: Наука. 1966.
  7. Bordbar H., Yousefi A.A, Abedini H. Production of titanium tetrachloride (TiCl₄) from titanium ores: A review. Polyolefins Journal. 2017. 4. № 2. P. 149–173.
  8. Зверев Л.В., Кострикин В. М. Хлорирование минерального сырья в расплаве солей. Минеральное сырье: сб. Вып. 2. М.: Геолтехиздат, 1961.
  9. Коршунов Б.Г., Стефанюк С.Л. Введение в хлорную металлургию редких элементов Л.: Металлургия. 1970.
  10. Иванов В. Хлорирование в солевом расплаве в технологии производства поликристаллического кремния // Электроника: наука, технология, бизнес. 2019. № 6. С. 154–160.
  11. Movahedian A., Raygan Sh., Pourabdoli M. The chlorination kinetics of zirconium dioxide mixed with carbon black // Thermochimica Acta. 2011. 512. P. 93–97.
  12. Динцес А.И. Потоловский Л.А. Основы технологии нефтехимического синтеза. М.: Гостоптехиздат. 1960.
  13. Цурика А.А. Семенов А.А., Ухов С.А. Получение тетрахлорида циркония хлорированием циркона и оксида циркония в присутствии серы // Вопросы атомной науки и техники. Сер.: Материаловедение и новые материалы. 2020. № 1 (102). С. 82–106.
  14. Семенов А.А., Цурика, С.А. Тиохлорирование в технологии титана, циркония и гафния // Вопросы атомной науки и техники. Серия: Материаловедение и новые материалы. 2023. № 1(117). С. 86–110.
  15. Neelameggham N.R, Brown R.E., Davis B.R. Energy‒Efficient and Low‒GHG‒Emission «Thiometallurgy» // JOM. 2014. 66. № 9. P. 1622–1628.
  16. Cherepnev A.A. Problems of chlorination in the field of rare and scattered elements. Moscow, Leningrad: Metallurgy Publishing House, 1940. P. 49–51.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Общая схема хлоратора: 1 – бункер для хлорируемого вещества; 2 – шнековая подача; 3 – корпус хлоратора; 4 – фурмы для подачи хлора; 5 – расплав; 6 – карман для слива избытков расплава; 7 – летка; 8 – охлаждаемая трубка для отвода газов.

Скачать (82KB)
3. Рис. 2. Принципиальная схема хлорирования с применением расплавленной серы.

Скачать (55KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».