The effect of nanoscale samples of silver and polyoxometalate {Mo72Fe30} on the reactions of peroxidation of organic compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nanoscale catalytic systems are interesting from the point of view of their application in the field of ecology, organic synthesis, in particular, in redox reactions, where high catalytic activity is required using small amounts of a catalyst. Such reactions are often advisable to implement in liquid media or solutions. The high specific surface area of nanostructured materials has a positive effect on the catalytic activity in cases where their sufficient wettability and contact with a liquid substrate are ensured. When using the above-mentioned catalysts, for this reason, it is necessary to find optimal conditions for the implementation of target reactions in order to prevent possible processes of agglomeration and deactivation of catalytic systems. The different chemical nature of catalytic materials has a very significant effect on the selectivity of oxidation processes in relation to different substances. Therefore, in principle, it is possible to create catalysts that selectively oxidize certain compounds in complex mixtures. The article presents the results of studying the kinetics of liquid-phase catalytic oxidation of water-soluble organic substances by peroxide compounds in the presence of a nanoscale sample of metallic silver, nanocluster polyoxometalate {Mo72Fe30}, heterogeneous iron molybdate and highly dispersed bronze powder of the PBVD brand. Phenol and ethylene glycol were used as model organic substances, the conversion of which was determined during the reaction by gas chromatography with a flame ionization detector, and saturated solutions of potassium persulfate and 36% hydrogen peroxide were used as oxidizing agents. For the catalyst samples that showed the highest substrate conversion, the reaction rate constants were calculated using the Origin program using the pseudo-first order equation. Some oxidation products have also been identified using a mass spectroscopic detector. Porous spherical nanocluster polyoxometalate {Mo72Fe30} turns out to be a more effective catalyst for the oxidation of phenol with persulfate in alcoholic solutions, compared with Fe2(MoO4)3. Among the studied catalysts of liquid-phase peroxidation of ethylene glycol, colloidal silver has the greatest catalytic effect on the oxidation process.

About the authors

S. Y. Menshikov

Ural State Mining University

Email: sergey.menshikov@m.ursmu.ru
Yekaterinburg, Russia

V. S. Kurmacheva

Ural State Mining University

Email: verakurmacheva55@mail.ru
Yekaterinburg, Russia

S. A. Fedorov

Ural State Mining University; Vatolin Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: saf13d@mail.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

A. N. Malyshev

Ural State Mining University; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: malyshev.k1b@gmail.com
Yekaterinburg, Russia; Yekaterinburg, Russia

M. O. Tonkushina

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: sergey.menshikov@m.ursmu.ru
Yekaterinburg, Russia

A. A. Ostroushko

Ural Federal University named after the first President of Russia B.N. Yeltsin

Author for correspondence.
Email: sergey.menshikov@m.ursmu.ru
Yekaterinburg, Russia

References

  1. Menshikov S.Yu., Belozerova K.A., Ostroushko A.A. Vozdejstvie nanoklasternogo polioksometallata {Mo72Fe30} na okislenie persul'fatom jodid-ionov [Influence of the nanocluster {Mo72Fe30} polyoxometalate on oxidation of iodide-ions by persulfate] // Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov. 2020. № 12. P. 853–859. [In Russian]
  2. Eliseeva E.A., Berezina S.L. Kineticheskie harakteristiki rastvoreniya dioksida titana v kislotnoj srede [Kinetic characteristics of titanium dioxide dissolution in an acidic medium] // Metally. 2024. № 1. P. 36–41. [In Russian]
  3. Kompoziciya dlya izgotovleniya elektrotekhnicheskih izdelij [Composition for the manufacture of electrical products].№ 2022109944; announced on 04/13/2022; published on 09/20/2022. [In Russian]
  4. Menshikov S.Yu., Vurasko A.V., Petrov L.A., Volkov V.L., Novoselova A.A.Zhidkofaznoe okislenie antracena peroksidom vodoroda v prisutstvii oksidnyh vanadievyh bronz CuxV2O5 [Liquid-phase oxidation of anthracene with hydrogen hydroxide in the presence of vanadium oxide bronzes with CuхV2O5], Neftekhimiya. 1992. 32. № 2. P. 162–164. [In Russian]
  5. Сopyright certificate. No. 1657225. Sposob polucheniya katalizatora dlya delignifikacii drevesiny (SSSR) [A method for obtaining a catalyst for wood delignification (USSR)]. № 4738522/04; application dated 07/31/1989; published on 02/22/1991, Bul. №23. [In Russian]
  6. Bogacheva N.V., Tarbeeva K.A., Ogorodova N.Y. Razrabotka poshagovoj metodiki polucheniya nanochastits serebra tsitratnym metodom [Development of step-by-step method for producing silver nanoparticles by citrate method] // Izvestiya vysshikh uchebnykh zavedenij. Khimiya i khimicheskaya tekhnologiya. 2020. 63. № 5. P. 65–69. [In Russian]
  7. Rey А., Faraldos М., Casas J.A.. Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface // Appl. Catalysis B: Environm. 2009.86(1–2). P. 69–77.
  8. Sirotin S.V., Moskovskaya I.F., Kolyagin Yu.G. et al. Kataliticheskie svojstva hlorida zheleza (III), nanesennogo na molekulyarnoe sito MSM-41 v zhidkofaznom okislenii fenola [Catalytic properties of ferric (III) chloride deposited on an MSM-41 molecular sieve in the liquid-phase oxidation of phenol] // Zhurnal fizicheskoj himii. 2011. 85. №3. P.453–459. [In Russian]
  9. Sapunov V.N., Mikhailyuk A.I., Litvintsev I.Yu. Kinetika i mekhanizm kataliticheskogo gidroksilirovaniya fenola peroksidom vodoroda [Kinetics and mechanism of catalytic hydroxylation of phenol with hydrogen peroxide] // Kinetika i kataliz. 1998. 39. № 3. P. 365–375 [In Russian]
  10. Shi H., Yin X., Subramaniam B., Chaudhari R.V. Liquid-Phase Oxidation of Ethylene Glycol on Pt and Pt−Fe Catalysts for the Production of Glycolic Acid: Remarkable Bimetallic Effect and Reaction Mechanism // Ind. Eng. Chem. Res. 2019.58. P. 18561−18568.
  11. Vodyankina O.V., Kurina L.N., Petrov L.A., Knyazev A.S. Glioksal': monografiya [Glyoxal: monograph]. M: Academia Publ. 2007. P. 248 [In Russian]
  12. Shakeel К., Javaid M., Muazzam Y., Nagvi S.R., Tagvi S.A.A., Uddin F., Mehran M.T., Sikander U., Niazi M.B.K. Perfomance comparasion of industrially produced formaldehyde using two different catalysts //Processes. 2020.8. P. 571–582.
  13. Müller A., Krickemeyer E., Bögge H. et al. Organizational forms of matter: an inorganic super fullerene and keplerate based on molybdenum oxide // Angewandte Chem. Internat. Ed. 1998.37(24). P.3359– 3363.
  14. Müller A., Sarkar S., Shah S.Q.N. et al.Archimedean synthesis and magic numbers: «sizing» giant molybdenum-oxide-based molecular spheres of the keplerate type // Angewandte Chem. Internat. Ed. 1999.38(21). P. 3238–3241.
  15. Tonkushina M.O., Gagarin I.D., Russian O.V. and others. Tonkushina M.О., Gagarin I.D., Russkikh O.V. et al. Destruktsiya polioksometallata {Mo72Fe30} kak transportnogo agenta v sredakh, modeliruyushchikh krov', ego stabilizatsiya al'buminom [Destruction of polyoxometalate {Mo72Fe30} as a transport agent in blood simulating media, its stabilization by albumin in] // Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov/ 2020. № 12. P. 885–892. [In Russian]
  16. Velikov K.P., Zegers G.E., A. van Blaaderen. Synthesis and characterization of large colloidal silver particles // Langmuir. 2003.19(4). P. 1384–1389.
  17. Dong X., Ji X., Wu H., Zhao L., Li J., Yang W. Phys J. Shape control of silver nanoparticles by stepwise citrate reduction // Chem. C. 2009.113(16). P. 6573–6576.
  18. Krutyakov Yu.A. Kudrinsky A.A., Olenin A.Yu., Lisichkin G.V. Synthesis and properties of silver nanoparticles: advances and prospects // Russian Chemical Reviews. 2008. 77. № 3. P. 233– 257 [In Russian]
  19. Malyshev A.N., Menshikov S.Yu. Zhidkofaznoe okislenie KI i skipidara persul'fatom v CH3COOH [Liquid-phase oxidation of KI and turpentine by persulfate in CH3COOH]. // Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya: materialy XXVIII MNTK, provodimoj v ramkah XXI Ural'skoj gornopromyshlennoj dekady. Ekarerinburg, Fort Dialog-Iset Publ., 2023, P. 207–209. [In Russian]
  20. Menshikov S.Yu., Vurasko A.V., Driker B.N., Mikushina Yu.V., Eremin D.V.Vliyanie primesej v antrahinone na ego kataliticheskuyu aktivnost' v processe delignifikacii [The effect of impurities in anthraquinone on its catalytic activity during delignification] // Zhurnal prikladnoj himii. 2010. 83. №5. P. 849–853. [In Russian]
  21. Menshikov S.Yu., Vazhenin V.A., Valova M.S., Ganebnykh I.N., Troshin D.P., Shishlov O.F., Kovalev A.A., Bazhenova L.N., Markov A.A. Use of HPLC/MS and ESR-spectroscopy methods in study of gas phase oxidation of methanol in the presence of mixed metal oxide catalyst // Abstract XX Mendeleev Congress, 26–30 October 2016. 3. P. 240 [In Russian]
  22. Kodakov N.A., Prikhodko A.A., Shmakov A.A., Asadov O.I., Troshin D.P., Shishlov O.F., Kovalev A.A., Vazhenin V.A., Surikov V.T., Ganebnykh I.N., Bazhenova L.N., Menshikov S.Yu. Ispol'zovanie gazovykh analizatorov v opredelenii sostava gazovoi fazy pri okislenii metanola v prisutstvii smeshanogo metalloksidnogo katalizatora [ Use of gas analyzers in determining the composition of the gas phase during the oxidation of methanol in the presence of a mixed metal oxide catalyst]. // Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya: materialy XXII MNTK, provodimoj v ramkah XV Ural'skoj gornopromyshlennoj dekady. Ekaterinburg, Fort Dialog-Iset Publ., 2017, P. 252–256. [In Russian]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».