MKT-077 подавляет функциональную активность изолированных митохондрий скелетных мышц мышей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе исследовано влияние производного родацианина MKT-077 на функционирование изолированных митохондрий скелетных мышц мышей. Показано, что MKT-077 дозозависимо подавляет дыхание митохондрий, энергизованных как глутаматом и малатом (субстраты комплекса I дыхательной цепи), так и сукцинатом (субстрат комплекса II дыхательной цепи). Такое действие MKT-077 сопровождается снижением мембранного потенциала органелл и связано как с ингибированием активности комплексов I и II дыхательной цепи митохондрий, так и c увеличением протонной проницаемости внутренней мембраны митохондрий. Молекулярный докинг выявил в комплексе I дыхательной цепи митохондрий сайты, обладающие сродством к MKT-077, сравнимым со сродством к специфическому ингибитору ротенону. 5 мкМ MKT-077 вызвал достоверное увеличение продукции перекиси водорода митохондриями скелетных мышц. Однако в концентрации 1 мкМ MKT-077 снижал прооксидантный эффект антимицина А. Кроме того, MKT-077 дозозависимо снизил способность митохондрий поглощать и аккумулировать ионы кальция в матриксе. В работе обсуждаются механизмы возможного действия MKT-077 на функционирование митохондрий скелетных мышц и их вклад в побочные эффекты, наблюдаемые при in vivo терапии патологических состояний с помощью этого производного родацианина.

Об авторах

А. Д. Игошкина

Марийский государственный университет

Автор, ответственный за переписку.
Email: dubinin1989@gmail.com
Йошкар-Ола, Республика Марий Эл, 424000 Россия

Н. В. Микина

Марийский государственный университет

Email: dubinin1989@gmail.com
Йошкар-Ола, Республика Марий Эл, 424000 Россия

А. В. Чулков

Марийский государственный университет

Email: dubinin1989@gmail.com
Йошкар-Ола, Республика Марий Эл, 424000 Россия

Е. И. Хорошавина

Марийский государственный университет

Email: dubinin1989@gmail.com
Йошкар-Ола, Республика Марий Эл, 424000 Россия

М. В. Дубинин

Марийский государственный университет

Email: dubinin1989@gmail.com
Йошкар-Ола, Республика Марий Эл, 424000 Россия

Список литературы

  1. Modica-Napolitano J.S., Koya K., Weisberg E., Brunelli B.T., Li Y., Chen L.B. 1996. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res. 56 (3), 544–550.
  2. Koya K., Li Y., Wang H., Ukai T., Tatsuta N., Kawakami M., Shishido, Chen L.B. 1996. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res. 56, 538–543.
  3. Chiba Y., Kubota T., Watanabe M., Matsuzaki S.W., Otani Y., Teramoto T., Matsumoto Y., Koya K., Kitajima M. 1998. MKT-077, localized lipophilic cation: Antitumor activity against human tumor xenografts serially transplanted into nude mice. Anticancer Res. 18 (2A), 1047–1052.
  4. Wen B., Xu K., Huang R., Jiang T., Wang J., Chen J., Chen J., He B. 2022. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol Med Rep. 25 (5), 165. https://doi.org/10.3892/mmr.2022.12681
  5. Liang T., Hang W., Chen J., Wu Y., Wen B., Xu K., Ding B., Chen J. 2021. ApoE4 (Δ272-299) induces mitochondrial-associated membrane formation and mitochondrial impairment by enhancing GRP75-modulated mitochondrial calcium overload in neuron. Cell Biosci. 11 (1), 50. https://doi.org/10.1186/s13578-021-00563-y
  6. Rousaki A., Miyata Y., Jinwal U.K., Dickey C.A., Gestwicki J.E., Zuiderweg E.R. 2011. Allosteric drugs: The interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol. 411 (3), 614–632. https://doi.org/10.1016/j.jmb.2011.06.003
  7. Xu H., Guan N., Ren Y.L., Wei Q.J., Tao Y.H., Yang G.S., Liu X.Y., Bu D.F., Zhang Y., Zhu S.N. 2018. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 9 (1), 140. https://doi.org/10.1186/s12882-018-0940-3
  8. Li J., Qi F., Su H., Zhang C., Zhang Q., Zhang S. 2022. GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int. J. Biol Sci. 18 (7), 2914–2931. https://doi.org/10.7150/ijbs.71571
  9. Esfahanian N., Knoblich C.D., Bowman G.A., Rezvani K. 2023. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front. Cell Dev. Biol. 11, 1028519. https://doi.org/10.3389/fcell.2023.1028519
  10. Williamson C.L., Dabkowski E.R., Dillmann W.H., Hollander J.M. 2008. Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am. J. Physiol. Heart Circ. Physiol. 294 (1), H249–H256. https://doi.org/10.1152/ajpheart.00775.2007
  11. Dubinin M.V., Stepanova A.E., Mikheeva I.B., Igoshkina A.D., Cherepanova A.A., Talanov E.Y., Khoroshavina E.I., Belosludtsev K.N. 2024. Reduction of mitochondrial calcium overload via MKT-077-induced inhibition of glucose-regulated protein 75 alleviates skeletal muscle pathology in dystrophin-deficient mdx mice. Int. J. Mol. Sci. 25 (18), 9892. https://doi.org/10.3390/ijms25189892
  12. Weisberg E.L., Koya K., Modica-Napolitano J., Li Y., Chen L.B. 1996. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res. 56 (3), 551–555.
  13. Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G., Belosludtsev K.N. 2020. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (5), 165674. https://doi.org/10.1016/j.bbadis.2020.165674
  14. Belosludtsev K.N., Belosludtseva N.V., Kosareva E.A., Talanov E.Y., Gudkov S.V., Dubinin M.V. 2020. Itaconic acid impairs the mitochondrial function by the inhibition of complexes II and IV and induction of the permeability transition pore opening in rat liver mitochondria. Biochimie. 176, 150–157. https://doi.org/10.1016/j.biochi.2020.07.011
  15. Pollard A.K., Craig E.L., Chakrabarti L. 2016. Mitochondrial complex I activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One. 11 (6), e0157405. https://doi.org/10.1371/journal.pone.0157405
  16. Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246. https://doi.org/10.1038/nprot.2012.058
  17. Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): Inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 51 (3), 219–229. https://doi.org/10.1007/s10863-019-09796-6
  18. Gu J., Liu T., Guo R., Zhang L., Yang M. 2022. The coupling mechanism of mammalian mitochondrial complex I. Nat. Struct. Mol. Biol. 29 (2), 172–182. https://doi.org/10.1038/s41594-022-00722-w
  19. Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. 2021. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61 (8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  20. Trott O., Olson A.J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334
  21. Neese F., Wennmohs F., Becker U., Riplinger C. 2020. The ORCA quantum chemistry program package. J. Chem. Phys. 152 (22), 224108. https://doi.org/10.1063/5.0004608
  22. Dubinin M. V., Mikheeva I. B., Stepanova A. E., Mikina N. V., Sushentsov D. V., Sharapov V. A., Cherepanova A. A., Loskutov V. V., Belosludtsev K. N. 2024. MKT-077 normalizes mitochondrial function and mitigates cardiac pathology in mdx mice. Biocell. 48 (12), 1815–1825. https://doi.org/10.32604/biocell.2024.058068
  23. Kharechkina E.S., Nikiforova A.B., Belosludtsev K.N., Rokitskaya T.I., Antonenko Y.N., Kruglov A.G. 2021. Pioglitazone is a mild carrier-dependent uncoupler of oxidative phosphorylation and a modulator of mitochondrial permeability transition. Pharmaceuticals (Basel). 14 (10), 1045. https://doi.org/10.3390/ph14101045
  24. Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94 (3), 909–950. https://doi.org/10.1152/physrev.00026.2013
  25. Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. 2003. Production of reactive oxygen species by mitochondria: Central role of complex III. J. Biol. Chem. 278 (38), 36027–36031. https://doi.org/10.1074/jbc.M304854200
  26. Белослудцев К.Н., Дубинин М.В., Белослудцева Н.В., Миронова Г.Д. 2019. Транспорт ионов Ca2+ митохондриями: механизмы, молекулярные структуры и значение для клетки. Биохимия. 6 (84), 759–775. https://doi.org/10.1134/S0320972519060022
  27. Park S.H., Baek K.H., Shin I., Shin I. 2018. Subcellular HSP70 inhibitors promote cancer cell death via different mechanisms. Cell Chem Biol. 25 (10), 1242–1254. https://doi.org/10.1016/j.chembiol.2018.06.010
  28. Ozaki T., Yamashita T., Ishiguro S. 2009. Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim. Biophys. Acta. 1793 (12), 1848–1859. https://doi.org/10.1016/j.bbamcr.2009.10.002

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».