🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Morphofunctional Evaluation of Rat Leg Muscles under the Influence of Hindlimb Unloading, Tenotomy, and Denervation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Skeletal muscle atrophy can develop under the influence of various factors related to their disuse, such as immobilization, denervation, or exposure to microgravity. The aim of this work was to conduct a morphological and functional assessment of skeletal muscles in disuse models in rats. The rats were randomly assigned to a control group and groups that underwent denervation, tenotomy, and hindlimb unloading. During the experiments, a decrease in the diameter of muscle fibers was revealed in all experimental groups. During tenotomy, there was a decrease in dystrophin immunosuppression. During hindlimb unloading, the dystrophin level decreased, but by day 35, recovery was observed in the gastrocnemius and anterior tibial muscles, while in the soleus it continued to fall. After denervation, the dystrophin content also decreased, but then increased, reaching control values for the soleus muscle by day 35. The level of neuronal NO-synthase significantly decreased in all experimental groups. The effects of denervation and tenotomy lead to pronounced changes in the contractile function of the soleus muscle in rats, which are in direct correlation with the development of atrophic processes.

About the authors

D. E. Sabirova

Kazan (Volga Region) Federal University; Sirius University of Science and Technology, Sirius Federal Territory

Email: sabirova.dianka@list.ru
Kazan, Russia; Sirius Federal Territory, Russia

A. A. Shadrina

Sirius University of Science and Technology, Sirius Federal Territory

Sirius Federal Territory, Russia

A. A. Eremeev

Kazan (Volga Region) Federal University

Kazan, Russia

A. E. Khairullin

Kazan (Volga Region) Federal University; Kazan State Medical University

Kazan, Russia; Kazan, Russia

T. V. Baltina

Kazan (Volga Region) Federal University

Kazan, Russia

References

  1. Pette D., Vrbová G. 2017. The Contribution of neuromuscular stimulation in elucidating muscle plasticity revisited. Eur. J. Transl. Myol. 27 (1), 6368.
  2. Kalyani R.R., Corriere M., Ferrucci L. 2014. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2 (10), 819–829.
  3. Atherton P.J., Greenhaff P.L., Phillips S.M., Bodine S.C., Adams C.M., Lang C.H. 2016. Control of skeletal muscle atrophy in response to disuse: Clinical/preclinical contentions and fallacies of evidence. Am. J. Physiol. Endocrinol. Metab. 311 (3), 594–604.
  4. Oikawa S.Y., Holloway T.M., Phillips S.M. 2019. The impact of step reduction on muscle health in aging: protein and exercise as countermeasures. Front. Nutr. 6, 75.
  5. Booth F.W., Gollnick P.D. 1983. Effects of disuse on the structure and function of skeletal muscle. Med. Sci. Sports Exerc. 15, 415–420.
  6. Jackman, R.W., Kandarian S.C. 2002. The molecular basis of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 287 (3), 834–843.
  7. Mirzoev T.M. 2020.Skeletal muscle recovery from disuse atrophy: Protein turnover signaling andstrategies for accelerating muscle regrowth. Int. J. Mol. Sci. 21, 7940.
  8. Sartori R., Romanello V., Sandri M. 2021. Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nat Commun. 12 (1), 330.
  9. Michael K. 2000. Relationship of skeletal muscle atrophy to functional status: A systematic research review. Biol. Res. Nurs. 2, 117–131.
  10. Xi S., Yue S. 2003. Research progress of disuse muscle atrophy. Chin. J. Clin. Rehabil. 7, 710–714.
  11. Baltina T.V., Eremeev A.A., Pleshchinskii I.N. 2006. The state of the contralateral neuromotor apparatus of the rat in conditions of unilateral tenotomy. Neuroscience and Behavioral Physiology. 36 (4), 385–389.
  12. De Angelis C., Scarfo C., Falcinelli M., Perna E., Reda E., Ramacci M.T., Angelucci L. 1994. Acetyl-L-carnitine prevents agedependent structural alterations in rat peripheral nerves and promotes regeneration following sciatic nerve injury in young and senescent rats. Exp. Neurol. 128, 103–114.
  13. Morey-Holton E.R. 1979. Spaceflight and bone turnover: correlation with a new rat model of weightlessness. BioScience. 29, 168–172.
  14. Ильин Е.А., Новиков В.Е. 1980. Стенд для моделирования физиологических эффектов невесомости в лабораторных экспериментах с крысами. Косм. биол. и авиакосм. мед. 14 (3), 79–80.
  15. Саченков О.А., Семенова Е.В., Федянин А.О., Смирнова В.В., Балтина Т.В. 2022. Свидетельство о государственной регистрации ПЭВМ № 2022661168 Программа для анализа гистологических изображений мышечной ткани.
  16. Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cyber J. 9, 62–66.
  17. Meyer F. 1994. Topographic distance and watershed lines. Signal Processing. 38, 113–125.
  18. Гришин С.Н., Хайруллин А.Е., Зиганшин А.У., Ефимова Д.В. 2023. Патент на полезную модель № 216564 U1 Российская Федерация, МПК А61N 1/04, G09B 23/28. Всасывающий куль-то нерва электрод для электрической стимуляции: № 2022131919: заявл. 07.12.2022: опубл. 14.02.2023, заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный медицинский университет" Министерства здравоохранения Российской Федерации.
  19. Fitts R.H., Riley D.R., Widrick J.J. 2000. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J. Appl. Physiol. 89, 823–839.
  20. Bonanni R., Cariati I., Marini M., Tarantino U., Tancredi V. 2023. Microgravity and musculoskeletal health: What strategies should be used for a great challenge? Life (Basel). 13 (7), 1423.
  21. Ohira Y., Jiang B., Roy R.R., Oganov V., Ilyina-Kakueva E., Marini J.F., Edgetron V.R. 1992. Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. J. Appl. Physiol. 73 (2), 51–57.
  22. Phillips S.M., McGlory C. 2014. Cross Talk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. J. Physiol. 592, 5341–5343.
  23. Powers S.K. 2014. Can antioxidants protect against disuse muscle atrophy? Sports medicine. 44 (2), 155–165.
  24. Sandri M., Sandri C., Gilbert A., Skurk C., Calabria E., Picard A., Walsh K., Schiaffino S., Lecker S.H., Goldberg A.L. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 117 (3), 399–412.
  25. Jagoe R.T., Goldberg A.L. 2001. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr. Opin. Clin. Nutr. Metab. Care. 4 (3), 183–190.
  26. Guo A., Li K., Tian H.C., Fan Z., Chen Q.N., Yang Y.F., Yu J., Wuy X., Xiao Q. 2021. FGF19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin levels via the AMPK/SIRT-1/PGC-α pathway. J. Cell Mol. Med. 25 (7), 3585–3600.
  27. Macpherson P.C., Wang X., Goldman D. 2011. Myogenin regulates denervation-dependent muscle atrophy in mouse oclus muscle. J. Cell Biochem. 112 (8), 2149–2159.
  28. Gao H., Li Y.F. 2018. Distinct signal transductions in fast- and slow-twitch muscles upon denervation. Physiol. Rep. 6 (4), 13606.
  29. Chockalingam P.S., Cholera R., Oak S.A., Zheng Y., Jarrett H.W., Thomason D.B. 2002. Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am. J. Physiol. Cell Physiol. 288, 500–511.
  30. Zhang P., Li W., Liu H., Li J., Wang J., Li Y., Chen X., Yang Z., Fan M. 2014. Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice. Cell Biochem. Biophys. 70 (2), 1057–1067.
  31. Swiderski K., Brock C.J., Trieu J., Chee A., Thakur S.S., Baum D.M., Gregorevic P., Murphy K.T., Lynch G.S. 2021. Phosphorylation of ERK and dystrophin S3059 protects against inflammation-associated C2C12 myotube atrophy. Am. J. Physiol. Cell Physiol. 320 (6), 956–965.
  32. Bialek P., Morris C., Parkington J., St Andre M, Owens J., Yaworsky P., Secherman H., Jelinsky S.A. 2011. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy. Physiol. Genomics. 43 (19), 1075–1086.
  33. Zhao J., Brault J.J., Schild A. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6 (6), 472–483.
  34. Fareed M.U., Evenson A.R., Wei W., Menconi M., Poylin V., Petkova V., Pignol B., Hasselgren P.O. 2006. Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression. Am. J. Physiol. Regul. Integr. 290 (6), 1589–1597.
  35. Aby K., Antony R., Eichholz M., Srinivasan R., Li Y. Enhanced pro-BDNF-p75NTR pathway activity in denervated skeletal muscle. 2021. Life Sci. 286, 20067.
  36. Baum O., Aaldijk D., Engeli A.L., Spree M., Summermatter S., Handschin C., Zakrzewicz A. 2018. Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice. Nitric Oxide. 77, 35–43.
  37. Suzuki N., Motohashi N., Uezumi A., Fukada S., Yoshimura T., Itoyama Y., Aoki M., Miyagoe-Suzuki Y., Takeda S. 2007. NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J. Clin. Invest. 117 (9), 2468–2476.
  38. Gomes M.D., Lecker S.H., Jagoe R.T., Navon A., Goldberg A.L. 2001. Atrogin-1, a muscle-specific Fabox protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. U.S.A. 98 (25), 14440–14445.
  39. Lawler J., Kunst M.M., Hord J.M. 2014. EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading. Am. J. Physiol. Regul. Integr. Comp Physiol. 306 (7), 470–482.
  40. Orr A.W., Helmke B.P., Blackman B.R., Schwartz M.A. 2006. Mechanisms of mechanotransduction. Dev. Cell. 10 (1), 11–20.
  41. Ломоносова Ю.Н., Каламкаров Г.Р., Бугрова А.Е., Шевченко Т.Ф., Карташкина Н.Л., Лысенко Е.А., Шенкман Б.С., Немировская Т.Л. 2012. Роль NO-синтазы в регуляции белкового метаболизма растянутой m. Soleus крыс при функциональной разгрузке. Биохимия. 77 (2), 256–266.
  42. Brennan J.E., Chao D.S., Xia H., Aldape K., Bredt D.S. 1995. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell. 82 (5), 743–752.
  43. Ohlendieck K., Swandulla D. 2021. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch. 473 (12), 1813–1839.
  44. Foletta V.C., White L.J., Larsen A.E., Léger B., Russell A.P. 2011. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 461 (3), 325–335.
  45. McDonald K.S., Fitts R.H. 1993. Effect of hindlimb unweighting on single soleus fiber maximal shortening velocity and ATPase activity. J. Appl. Physiol. 74 (6), 2949–2957.
  46. Flick M., Hoppeler H. 2003. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev. Physiol. Biochem. Pharmacol. 146, 159–216.
  47. Gong H.M., Ma W., Regnier M., Irving T.C. 2022. Thick filament activation is different in fast- and slow-twitch skeletal muscle. J. Physiol. 600 (24), 5247–5266.
  48. Ma W., Lee K.H., Yang S., Irving T.C., Craig R. 2019. Lattice arrangement of myosin filaments correlates with fiber type in rat skeletal muscle. J. Gen. Physiol. 151 (12), 1404–1412.
  49. Wilkinson D.J., Piasecki M., Atherton P.J. 2018. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev. 47 (4), 123–123.
  50. Pierantozzi E., Szentesi P., Paolini C., Dienes B. 2022. Impaired intracellular Ca2+ dynamics, M-band and sarcomere fragility in skeletal muscles of obscurin KO mice. Int. J. Mol. Sci. 23 (3), 1319.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».