The Role of Cx43 in the Survival and Death of Neurons and Glial Cells in Injuries of the Central and Peripheral Nervous System
- Authors: Nwosu C.D.1, Kirichenko E.Y.1, Logvinov A.K.2, Rodkin S.V.1
-
Affiliations:
- Research Laboratory "Medical Digital Imaging Based on a Base Model"
- Academy of Biology and Biotechnology, Southern Federal University
- Issue: Vol 42, No 6 (2025)
- Pages: 441–464
- Section: ОБЗОРЫ
- URL: https://bakhtiniada.ru/0233-4755/article/view/362236
- DOI: https://doi.org/10.7868/S3034521925060017
- ID: 362236
Cite item
Abstract
About the authors
Ch. D. Nwosu
Research Laboratory "Medical Digital Imaging Based on a Base Model"
Email: chizaramwosu4@gmail.com
Rostov-on-Don, Russia
E. Yu. Kirichenko
Research Laboratory "Medical Digital Imaging Based on a Base Model"Rostov-on-Don, Russia
A. K. Logvinov
Academy of Biology and Biotechnology, Southern Federal UniversityRostov-on-Don, Russia
S. V. Rodkin
Research Laboratory "Medical Digital Imaging Based on a Base Model"Rostov-on-Don, Russia
References
- Smith C. 2023. Traumatic brain injury. In: Neurobiology of Brain Disorders. Elsevier, p. 443–455.
- Prins M., Greco T., Alexander D., Giza C.C. 2013. The pathophysiology of traumatic brain injury at a glance. Dis. Model. Mech. 6, 307–315. https://doi.org/10.1242/dmm.011585
- Huang C., Han X., Li X., Lam E., Peng W., Lou N., Torres A., Yang M., Garre J.M., Tian G.-F., Bennett M.V.L., Nedergaard M., Takano T. 2012. Critical Role of Connexin 43 in Secondary Expansion of Traumatic Spinal Cord Injury. J. Neurosci. 32, 3333–3338. https://doi.org/10.1523/JNEUROSCI.1216-11.2012
- Xie H., Cui Y., Deng F., Feng J. 2015. Connexin: A potential novel target for protecting the central nervous system? Neural Regen. Res. 10, 659. https://doi.org/10.4103/1673-5374.155444
- Chandross K.J. 1998. Nerve injury and inflammatory cytokines modulate gap junctions in the peripheral nervous system. Glia. 24, 21–31. https://doi.org/10.1002/(SICI)1098-1136(199809)24:1<21::AID-GLIA3>3.0.CO;2-3
- Sirnes S., Kjenseth A., Leithe E., Rivedal E. 2009. Interplay between PKC and the MAP kinase pathway in Connexin43 phosphorylation and inhibition of gap junction intercellular communication. Biochem. Biophys. Res. Commun. 382, 41–45. https://doi.org/10.1016/j.bbrc.2009.02.141
- Kim D.Y., Kam Y., Koo S.K., Joe C.O. 1999. Gating Connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J. Biol. Chem. 274, 5581–5587. https://doi.org/10.1074/jbc.274.9.5581
- Zhao Y., Rivieccio M.A., Lutz S., Scemes E., Brosnan C.F. 2006. The TLR3 ligand polyI:C downregulates connexin 43 expression and function in astrocytes by a mechanism involving the NF‐κB and PI3 kinase pathways. Glia. 54, 775–785. https://doi.org/10.1002/glia.20418
- Sáez J.C., Retamal M.A., Basilio D., Bukauskas F.F., Bennett M.V.L. 2005. Connexin-based gap junction hemichannels: Gating mechanisms. Biochim. Biophys. Acta – Biomembr. 1711, 215–224. https://doi.org/10.1016/j.bbamem.2005.01.014
- Ren D., Zheng P., Zou S., Gong Y., Wang Y., Duan J., Deng J., Chen H., Feng J., Zhong C., Chen W. 2022. GJA1-20K enhances mitochondria transfer from astrocytes to neurons via Cx43-TnTs after traumatic brain injury. Cell. Mol. Neurobiol. 42, 1887–1895. https://doi.org/10.1007/s10571-021-01070-x
- Lee I.H., Lindqvist E., Kiehn O., Widenfalk J., Olson L. 2005. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J. Comp. Neurol. 489, 1–10. https://doi.org/10.1002/cne.20567.
- Qi C., Acosta Gutierrez S., Lavriha P., Othman A., Lopez-Pigozzi D., Bayraktar E., Schuster D., Picotti P., Zamboni N., Bortolozzi M., Gervasio F.L., Korkhov V.M. 2023. Structure of the connexin-43 gap junction channel in a putative closed state. Elife. 12, RP87616. https://doi.org/10.7554/eLife.87616.3
- Кириченко Е.Ю., Скачков С.Н., Ермаков А.М. 2021. Структура и функции щелевых контактов и составляющих их коннексинов в ЦНС млекопитающих. Биологические мембраны Журнал мембранной и клеточной биологии. 38, 83–97. https://doi.org/10.31857/S0233475521020067
- Кириченко Е.Ю., Логвинов А.К., Сехвейл С.М Е.А.М. 2023. Щелевые контакты мозга в норме и при нейроонкогенезе (ультраструктурное исследование) / Донской государственный технический университет. Ростов-на-Дону: ООО «ДГТУ-принт». 180 c.
- Nielsen M.S., Nygaard Axelsen L., Sorgen P.L., Verma V., Delmar M., Holstein‐Rathlou N. 2012. Gap Junctions. Compr. Physiol. 2, 1981–2035. https://doi.org/10.1002/j.2040-4603.2012.tb00453.x
- Velasco‐Estevez M., Gadalla K.K.E., Liñan‐Barba N., Cobb S., Dev K.K., Sheridan G.K. 2020. Inhibition of Piezo1 attenuates demyelination in the central nervous system. Glia. 68, 356–375. https://doi.org/10.1002/glia.23722
- Xiong L.L., Xue L.L., Du R.L., Xu Y., Niu Y.J., Hu Q., Zhou H.L., Liu F., Zhu Z.Q., Yu C.Y., Wang T.H. 2021. LncRNA TCONS_00041002 improves neurological outcomes in neonatal rats with hypoxic-ischemic encephalopathy by inhibiting apoptosis and promoting neuron survival. Exp. Neurol. 346, 113835. https://doi.org/10.1016/j.expneurol.2021.113835
- Giorgi C., Baldassari F., Bononi A., Bonora M., De Marchi E., Marchi S., Missiroli S., Patergnani S., Rimessi A., Suski J.M., Wieckowski M.R., Pinton P. 2012. Mitochondrial Ca2+ and apoptosis. Cell Calcium. 52, 36–43. https://doi.org/10.1016/j.ceca.2012.02.008
- Li Y.H., Zhang C.L., Zhang X.Y., Zhou H.X., Meng L.L. 2015. Effects of mild induced hypothermia on hippocampal connexin 43 and glutamate transporter 1 expression following traumatic brain injury in rats. Mol. Med. Rep. 11, 1991–1996. https://doi.org/10.3892/mmr.2014.2928
- Avila M.A., Sell S.L., Hawkins B.E., Hellmich H.L., Boone D.R., Crookshanks J.M., Prough D.S., DeWitt D.S. 2011. Cerebrovascular connexin expression: Effects of traumatic brain injury. J. Neurotrauma. 28, 1803–1811. https://doi.org/10.1089/neu.2011.1900
- Cronin M., Anderson P.N., Cook J.E., Green C.R., Becker D.L. 2008. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol. Cell. Neurosci. 39, 152–160. https://doi.org/10.1016/j.mcn.2008.06.005
- Chen W., Guo Y., Yang W., Chen L., Ren D., Wu C., He B., Zheng P., Tong W. 2018. Phosphorylation of connexin 43 induced by traumatic brain injury promotes exosome release. J. Neurophysiol. 119, 305–311. https://doi.org/10.1152/jn.00654.2017
- Jaganjac M., Milkovic L., Zarkovic N., Zarkovic K. 2022. Oxidative stress and regeneration. Free Radic. Biol. Med. 181, 154–165. https://doi.org/10.1016/j.freeradbiomed.2022.02.004
- Ismail H., Shakkour Z., Tabet M., Abdelhady S., Kobaisi A., Abedi R., Nasrallah L., Pintus G., Al-Dhaheri Y., Mondello S., El-Khoury R., Eid A.H., Kobeissy F., Salameh J. 2020. Traumatic brain injury: Oxidative stress and novel anti-oxidants such as mitoquinone and edaravone. Antioxidants. 9, 943. https://doi.org/10.3390/antiox9100943
- Wang C.C., Wee H.Y., Hu C.Y., Chio C.C., Kuo J.R. 2018. The effects of memantine on glutamic receptorassociated nitrosative stress in a traumatic brain injury rat model. World Neurosurg. 112, e719–e731. https://doi.org/10.1016/j.wneu.2018.01.140
- Iurlaro R., Muñoz‐Pinedo C. 2016. Cell death induced by endoplasmic reticulum stress. FEBS J. 283, 2640–2652. https://doi.org/10.1111/febs.13598
- Muñoz-Ballester C., Leitzel O., Golf S., Phillips C.M., Zeitz M.J., Pandit R., Wash E., Donohue J. V., Smyth J.W., Lamouille S., Robel S. 2025. Astrocytic connexin43 phosphorylation contributes to seizure susceptibility after mild traumatic brain injury. bioRxiv [Preprint]. 2025: 2024.11.12.623104. https://doi.org/10.1101/2024.11.12.623104
- Chen M.J., Kress B., Han X., Moll K., Peng W., Ji R., Nedergaard M. 2012. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia. 60, 1660–1670. https://doi.org/10.1002/glia.22384
- Greer K., Chen J., Brickler T., Gourdie R., Theus M.H. 2017. Modulation of gap junction-associated Cx43 in neural stem/progenitor cells following traumatic brain injury. Brain Res. Bull. 134, 38–46. https://doi.org/10.1016/j.brainresbull.2017.06.016
- Gaete P.S., Lillo M.A., Figueroa X.F. 2014. Functional role of connexins and pannexins in the interaction between vascular and nervous system. J. Cell. Physiol. 229, 1336–1345. https://doi.org/10.1002/jcp.24563
- Chew S.L., Johnson C.S., Green C.R., Danesh-Meyer H. V. 2010. Role of connexin43 in central nervous system injury. Exp. Neurol. 225, 250–261. https://doi.org/10.1016/j.expneurol.2010.07.014
- Theodoric N., Bechberger J.F., Naus C.C., Sin W.-C. 2012. Role of Gap junction protein Connexin43 in astrogliosis induced by brain injury. PLoS One. 7, e47311. https://doi.org/10.1371/journal.pone.0047311
- Tonkin R.S., Mao Y., O'Carroll S.J., Nicholson L.F., Green C.R., Gorrie C.A., Moalem-Taylor G. 2015. Gap junction proteins and their role in spinal cord injury. Front. Mol. Neurosci. 7, 102. https://doi.org/10.3389/fnmol.2014.00102
- Sánchez O.F., Rodríguez A.V., Velasco-España J.M., Murillo L.C., Sutachan J.J., Albarracin S.L. 2020. Role of Connexins 30, 36, and 43 in brain tumors, neurodegenerative diseases, and neuroprotection. Cells. 9, 846. https://doi.org/10.3390/cells9040846
- Liang Z., Wang X., Hao Y., Qiu L., Lou Y., Zhang Y., Ma D., Feng J. 2020. The multifaceted role of astrocyte Connexin 43 in ischemic stroke through forming hemichannels and Gap junctions. Front. Neurol. 11, 703. https://doi.org/10.3389/fneur.2020.00703
- Orellana J.A., Stehberg J. 2014. Hemichannels: New roles in astroglial function. Front. Physiol. 5, 193. https://doi.org/10.3389/fphys.2014.00193
- Cina C., Maass K., Theis M., Willecke K., Bechberger J.F., Naus C.C. 2009. Involvement of the cytoplasmic C-terminal domain of Connexin43 in neuronal migration. J. Neurosci. 29, 2009–2021. https://doi.org/10.1523/JNEUROSCI.5025-08.2009
- Rinaldi F., Hartfield E.M., Crompton L.A., Badger J.L., Glover C.P., Kelly C.M., Rosser A.E., Uney J.B., Caldwell M.A. 2014. Cross-regulation of Connexin43 and β-catenin influences differentiation of human neural progenitor cells. Cell Death Dis. 5, e1017–e1017. https://doi.org/10.1038/cddis.2013.546
- Chever O., Lee C.Y., Rouach N. 2014. Astroglial Connexin43 hemichannels tune basal excitatory synaptic transmission. J. Neurosci. 34, 11228–11232. https://doi.org/10.1523/JNEUROSCI.0015-14.2014
- Retamal M.A., Froger N., Palacios-Prado N., Ezan P., Sáez P.J., Sáez J.C., Giaume C. 2007. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J. Neurosci. 27, 13781–13792. https://doi.org/10.1523/JNEUROSCI.2042-07.2007
- Scemes E., Suadicani S.O., Spray D.C. 2000. Intercellular communication in spinal cord astrocytes: Fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci. 20, 1435–1445. https://doi.org/10.1523/JNEUROSCI.20-04-01435.2000
- Linsambarth S., Carvajal F.J., Moraga-Amaro R., Mendez L., Tamburini G., Jimenez I., Verdugo D.A., Gómez G.I., Jury N., Martínez P., van Zundert B., Varela-Nallar L., Retamal M.A., Martin C., Altenberg G.A., Fiori M.C., Cerpa W., Orellana J.A., Stehberg J. 2022. Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR‐dependent transmission and short‐term fear memory in the basolateral amygdala. FASEB J. 36, e22134. https://doi.org/10.1096/fj.202100798RR
- Li K., Zhou H., Zhan L., Shi Z., Sun W., Liu D., Liu L., Liang D., Tan Y., Xu W., Xu E. 2018. Hypoxic preconditioning maintains GLT-1 against transient global cerebral ischemia through upregulating Cx43 and inhibiting c-Src. Front. Mol. Neurosci. 11, 344. https://doi.org/10.3389/fnmol.2018.00344
- Rovegno M., Soto P.A., Sáez P.J., Naus C.C., Sáez J.C., von Bernhardi R. 2015. Connexin43 hemichannels mediate secondary cellular damage spread from the trauma zone to distal zones in astrocyte monolayers. Glia. 63, 1185–1199. https://doi.org/10.1002/glia.22808
- Scemes E., Spray D.C. 2009. Connexin expression (Gap junctions and hemichannels) in astrocytes. In: Astrocytes in (Patho)Physiology of the Nervous System. Boston, MA: Springer US, pp. 107–150.
- McCutcheon S., Spray D.C. 2022. Glioblastoma–astrocyte Connexin 43 Gap junctions promote tumor invasion. Mol. Cancer Res. 20, 319–331. https://doi.org/10.1158/1541-7786.MCR-21-0199
- Dong H., Zhou X.W., Wang X., Yang Y., Luo J.W., Liu Y.H., Mao Q. 2017. Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma-associated epileptic discharge. Mol. Med. Rep. 16, 7890–7900. https://doi.org/10.3892/mmr.2017.7618
- Kirichenko E.Y., Salah M.S., Goncharova Z.A., Nikitin A.G., Filippova S.Y., Todorov S.S., Akimenko M.A., Logvinov A.K. 2020. Ultrastructural evidence for presenсe of gap junctions in rare case of pleomorphic xanthoastrocytoma. Ultrastruct. Pathol. 44, 227–236. https://doi.org/10.1080/01913123.2020.1737609
- Zhang M., Wang Z.Z., Chen N.H. 2023. Connexin 43 phosphorylation: Implications in multiple diseases. Molecules. 28, 4914. https://doi.org/10.3390/molecules28134914
- Liao C.K., Cheng H.H., Wang S.D., Yeih D.F., Wang S.M. 2013. PKCɛ mediates serine phosphorylation of connexin43 induced by lysophosphatidylcholine in neonatal rat cardiomyocytes. Toxicology. 314, 11–21. https://doi.org/10.1016/j.tox.2013.08.001
- Strauss R.E., Gourdie R.G. 2020. Cx43 and the actin cytoskeleton: Novel roles and implications for cell-cell junction-based barrier function regulation. Biomolecules. 10, 1656. https://doi.org/10.3390/biom10121656
- Neumann E., Hermanns H., Barthel F., Werdehausen R., Brandenburger T. 2015. Expression changes of MicroRNA-1 and its targets Connexin 43 and brain-derived neurotrophic factor in the peripheral nervous system of chronic neuropathic rats. Mol. Pain. 11, 39. https://doi.org/10.1186/s12990-015-0045-y
- El-Gazar A.A., El-Emam S.Z., M. El-Sayyad S., ElMancy S.S., Fayez S.M., Sheta N.M., Al-Mokaddem A.K., Ragab G.M. 2024. Pegylated polymeric micelles of boswellic acid-selenium mitigates repetitive mild traumatic brain injury: Regulation of miR-155 and miR-146a/BDNF/Klotho/Foxo3a cue. Int. Immunopharmacol. 134, 112118. https://doi.org/10.1016/j.intimp.2024.112118
- Sun L.Q., Gao J.L., Cui Y., Zhao M.M., Jing X. Bin, Li R., Tian Y.X., Cui J.Z., Wu Z.X. 2015. Neuronic autophagy contributes to p-connexin 43 degradation in hippocampal astrocytes following traumatic brain injury in rats. Mol. Med. Rep. 11, 4419–4423. https://doi.org/10.3892/mmr.2015.3264
- Feng J., Zou S., Yang X., Wang Z., Jiang B., Hou T., Duan J., Hong T., Chen W. 2023. Astrocyte-derived exosome-transported GJA1-20k attenuates traumatic brain injury in rats. Chin. Med. J. (Engl). 136, 880–882. https://doi.org/10.1097/CM9.0000000000002320
- Zhang L., Xiao Z., Su Z., Wang X., Tian H., Su M. 2024. Repetitive transcranial magnetic stimulation promotes motor function recovery in mice after spinal cord injury via regulation of the Cx43-autophagy loop. J. Orthop. Surg. Res. 19, 387. https://doi.org/10.1186/s13018-024-04879-6
- Chen B., Sun L., Wu X., Ma J. 2017. Correlation between connexin and traumatic brain injury in patients. Brain Behav. 7, 112404. https://doi.org/10.1002/brb3.770
- Xia J., Tan Y., Mao C., Shen W., Zhao Y. 2024. Remazolam affects the phenotype and function of astrocytes to improve traumatic brain injury by regulating the Cx43. Exp. Gerontol. 189, 112404. https://doi.org/10.1016/j.exger.2024.112404
- Zhang T., Wang Y., Xia Q., Tu Z., Sun J., Jing Q., Chen P., Zhao X. 2021. Propofol mediated protection of the brain from ischemia/reperfusion injury through the regulation of microglial Connexin 43. Front. Cell Dev. Biol. 9. https://doi.org/10.3389/fcell.2021.637233
- Yan J., Xie S., Chen D., Xiao J., Zeng E., Hong T., Duan J. 2025. Role ofCx43; and ACKR3 in modulating astrocytic response and neuronal survival post‐subarachnoid hemorrhage. Glia. 35, 677–682. https://doi.org/10.1002/glia.70008
- Sun L., Gao J., Zhao M., Jing X., Cui Y., Xu X., Wang K., Zhang W., Cui J. 2014. The effects of BMSCs transplantation on autophagy by CX43 in the hippocampus following traumatic brain injury in rats. Neurol. Sci. 35, 677–682. https://doi.org/10.1007/s10072-013-1575-6
- Zheng P., Ren D., Yu C., Zhang X., Zhang Y. 2022. DNA Methylation-related circRNA_0116449 Is Involved in lipid peroxidation in ttraumatic brain injury. Front. Mol. Neurosci. 15, 904913. https://doi.org/10.3389/fnmol.2022.904913
- Greer K., Basso E.K.G., Kelly C., Cash A., Kowalski E., Cerna S., Ocampo C.T., Wang X., Theus M.H. 2020. Abrogation of atypical neurogenesis and vascular-derived EphA4 prevents repeated mild TBIinduced learning and memory impairments. Sci. Rep. 10, 15374. https://doi.org/10.1038/s41598-020-72380-1
- Wu F., Liang T., Liu Y., Sun Y., Wang B. 2024. Hydrogen mitigates brain injury by prompting NEDD4-CX43- mediated mitophagy in traumatic brain injury. Exp. Neurol. 379, 114876. https://doi.org/10.1016/j.expneurol.2024.114876
- Yu B., Ma H., Kong L., Shi Y., Liu Y. 2013. Experimental research enhanced connexin 43 expression following neural stem cell transplantation in a rat model of traumatic brain injury. Arch. Med. Sci. 1, 132–138. https://doi.org/10.5114/aoms.2012.31438
- Chen X., Liang H., Xi Z., Yang Y., Shan H., Wang B., Zhong Z., Xu C., Yang G.Y., Sun Q., Sun Y., Bian L. 2020. BM-MSC Transplantation alleviates intracerebral hemorrhage-induced brain injury, promotes astrocytes Vimentin expression, and enhances astrocytes antioxidation via the Cx43/Nrf2/HO-1 Axis. Front. Cell Dev. Biol. 8, 302. https://doi.org/10.3389/fcell.2020.00302
- Нвосу Ч.Д., Кириченко Е.Ю., Родькин С.В. 2025. Экспрессия cx43 в нервной ткани при тяжелой. черепно-мозговой травме. Рецепторы и внутриклеточная сигнализация. 1, 310–315.
- DeWitt D.S., Prough D.S. 2003. Traumatic cerebral vascular injury: The effects of concussive brain injury on the cerebral vasculature. J. Neurotrauma. 20, 795–825. https://doi.org/10.1089/089771503322385755
- Smith M., Wilkinson S. 2017. ER homeostasis and autophagy. Essays Biochem. 61, 625–635. https://doi.org/10.1042/EBC20170092
- Schwarzmaier S.M., Kim S.W., Trabold R., Plesnila N. 2010. Temporal Profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J. Neurotrauma. 27, 121–130. https://doi.org/10.1089/neu.2009.1114
- Bains M., Hall E.D. 2012. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim. Biophys. Acta – Mol. Basis Dis. 1822, 675–684. https://doi.org/10.1016/j.bbadis.2011.10.017
- O’Carroll S.J., Gorrie C.A., Velamoor S., Green C.R., Nicholson L.F.B. 2013. Connexin43 mimetic peptide is neuroprotective and improves function following spinal cord injury. Neurosci. Res. 75, 256–267. https://doi.org/10.1016/j.neures.2013.01.004
- Abou-Mrad Z., Alomari S.O., Bsat S., Moussalem C.K., Alok K., El Houshiemy M.N., Alomari A.O., Minassian G.B., Omeis I.A. 2020. Role of connexins in spinal cord injury: An update. Clin. Neurol. Neurosurg. 197, 106102. https://doi.org/10.1016/j.clineuro.2020.106102
- Mao Y., Tonkin R.S., Nguyen T., O’Carroll S.J., Nicholson L.F.B., Green C.R., Moalem-Taylor G., Gorrie C.A. 2017. Systemic administration of Connexin43 mimetic peptide improves functional recovery after traumatic spinal cord injury in adult rats. J. Neurotrauma. 34, 707–719. https://doi.org/10.1089/neu.2016.4625
- O’Carroll S.J., Alkadhi M., Nicholson L.F.B., Green C.R. 2008. Connexin43 mimetic peptides reduce swelling, astrogliosis, and neuronal cell death after spinal cord injury. Cell Commun. Adhes. 15, 27–42. https://doi.org/10.1080/15419060802014164
- Choi S.R., Roh D.H., Yoon S.Y., Kwon S.G., Choi H.S., Han H.J., Beitz A.J., Lee J.H. 2016. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology. 111, 34–46. https://doi.org/10.1016/j.neuropharm.2016.08.027
- Zhang C., Yan Z., Maknojia A., Riquelme M.A., Gu S., Booher G., Wallace D.J., Bartanusz V., Goswami A., Xiong W., Zhang N., Mader M.J., An Z., Sayre N.L., Jiang J.X. 2021. Inhibition of astrocyte hemichannel improves recovery from spinal cord injury. JCI Insight. 6. https://doi.org/10.1172/jci.insight.134611
- Chen G., Park C.K., Xie R.G., Berta T., Nedergaard M., Ji R.R. 2014. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain. 137, 2193–2209. https://doi.org/10.1093/brain/awu140
- Xu Q., Cheong Y.K., He S.Q., Tiwari V., Liu J., Wang Y., Raja S.N., Li J., Guan Y., Li W. 2014. Suppression of spinal connexin 43 expression attenuates mechanical hypersensitivity in rats after an L5 spinal nerve injury. Neurosci. Lett. 566, 194–199. https://doi.org/10.1016/j.neulet.2014.03.004
- Meier C., Rosenkranz K. 2014. Cx43 expression and function in the nervous system – implications for stem cell mediated regeneration. Front. Physiol. 5, 1163436. https://doi.org/10.3389/fphys.2014.00106
- Huang Q., Sha W., Gu Q., Wang J., Zhu Y., Xu T., Xu Z., Yan F., Lin X., Tian S. 2023. Inhibition of Connexin43 improves the recovery of spinal cord injury against ferroptosis via the SLC7A11/GPX4 Pathway. Neuroscience. 526, 121–134. https://doi.org/10.1016/j.neuroscience.2023.06.017
- Fabbiani G., Reali C., Valentín-Kahan A., Rehermann M.I., Fagetti J., Falco M.V., Russo R.E. 2020. Connexin signaling is involved in the reactivation of a latent stem cell niche after spinal cord injury. J. Neurosci. 40, 2246–2258. https://doi.org/10.1523/JNEUROSCI.2056-19.2020
- Toro C.A., De Gasperi R., Vanselow K., Harlow L., Johnson K., Aslan A., Bauman W.A., Cardozo C.P., Graham Z.A. 2024. Muscle-restricted knockout of connexin 43 and connexin 45 accelerates and improves locomotor recovery after contusion spinal cord injury. Front. Physiol. 15, 194–199. https://doi.org/10.3389/fphys.2024.1486691
- Zhang D., Qin C., Meng F., Han X., Guo X. 2024. N‐Acetylcysteine treats spinal cord injury by inhibiting astrocyte proliferation. Anal. Cell. Pathol. (Amst.) 2024, 6624283. https://doi.org/10.1155/2024/6624283
- Toro C.A., Johnson K., Hansen J., Siddiq M.M., Vásquez W., Zhao W., Graham Z.A., Sáez J.C., Iyengar R., Cardozo C.P. 2023. Boldine modulates glial transcription and functional recovery in a murine model of contusion spinal cord injury. Front. Cell. Neurosci. 17, 1104–1119. https://doi.org/10.3389/fncel.2023.1163436
- Huang J., Hu X., Chen Z., Ouyang F., Li J., Hu Y., Zhao Y., Wang J., Yao F., Jing J., Cheng L. 2024. Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord. J. Neuroinflammation. 21, 88. https://doi.org/10.1186/s12974-024-03089-5
- Zou J., Guo Y., Wei L., Yu F., Yu B., Xu A. 2020. Long noncoding RNA POU3F3 and α-synuclein in plasma L1CAM exosomes combined with β-glucocerebrosidase activity: Potential predictors of Parkinson’s disease. Neurotherapeutics. 17, 1104–1119. https://doi.org/10.1007/s13311-020-00842-5
- Pierce J.D., Gupte R., Thimmesch A., Shen Q., Hiebert J.B., Brooks W.M., Clancy R.L., Diaz F.J., Harris J.L. 2018. Ubiquinol treatment for TBI in male rats: Effects on mitochondrial integrity, injury severity, and neurometabolism. J. Neurosci. Res. 96, 1080–1092. https://doi.org/10.1002/jnr.24210
- Liu P., Anandhan A., Chen J., Shakya A., Dodson M., Ooi A., Chapman E., White E., Garcia J.G., Zhang D.D. 2023. Decreased autophagosome biogenesis, reduced NRF2, and enhanced ferroptotic cell death are underlying molecular mechanisms of nonalcoholic fatty liver disease. Redox Biol. 59, 102570. https://doi.org/10.1016/j.redox.2022.102570
- Wang A., Xu C. 2019. The role of connexin43 in neuropathic pain induced by spinal cord injury. Acta Biochim. Biophys. Sin. (Shanghai). 51, 554–560. https://doi.org/10.1093/abbs/gmz038
- Chandross K.J., Kessler J.A., Cohen R.I., Simburger E., Spray D.C., Bieri P., Dermietzel R. 1996. Altered Connexin expression after peripheral nerve injury. Mol. Cell. Neurosci. 7, 501–518. https://doi.org/10.1006/mcne.1996.0036
- Xing J., Wang Η., Chen L., Wang H., Huang H., Huang J., Xu C. 2023. Blocking Cx43 alleviates neuropathic pain in rats with chronic constriction injury via the P2X4 and P38/ERK-P65 pathways. Int. Immunopharmacol. 114, 109506. https://doi.org/10.1016/j.intimp.2022.109506
- Yoshimura T., Satake M., Kobayashi T. 1996. Connexin43 is another Gap junction protein in the peripheral nervous system. J. Neurochem. 67, 1252–1258. https://doi.org/10.1046/j.1471-4159.1996.67031252.x
- Wong C.E., Liu W., Huang C.C., Lee P.H., Huang H.W., Chang Y., Lo H.T., Chen H.F., Kuo L.C., Lee J.S. 2024. Sciatic nerve stimulation alleviates neuropathic pain and associated neuroinflammation in the dorsal root ganglia in a rodent model. J. Transl. Med. 22, 770. https://doi.org/10.1186/s12967-024-05573-1
- Zhou L., Ao L., Yan Y., Li C., Li W., Ye A., Liu J., Hu Y., Fang W., Li Y. 2020. Levo-corydalmine attenuates vincristine-induced neuropathic pain in mice by upregulating the Nrf2/HO-1/CO pathway to inhibit Connexin 43 expression. Neurotherapeutics. 17, 340–355. https://doi.org/10.1007/s13311-019-00784-7
- Burrell J.C., Vu P.T., Alcott O.J.B., Toro C.A., Cardozo C., Cullen D.K. 2023. Orally administered boldine reduces muscle atrophy and promotes neuromuscular recovery in a rodent model of delayed nerve repair. Front. Cell. Neurosci. 17, 1240916. https://doi.org/10.3389/fncel.2023.1240916
- Ohsumi A., Nawashiro H., Otani N., Ooigawa H., Toyooka T., Shima K. 2010. Temporal and spatial profile of phosphorylated Connexin43 after traumatic brain injury in rats. J. Neurotrauma. 27, 1255–1263. https://doi.org/10.1089/neu.2009.1234
- Bretová K., Svobodová V., Dubový P. 2024. Changes in Cx43 and AQP4 proteins, and the capture of 3 kDa dextran in subpial astrocytes of the rat medial prefrontal cortex after both sham surgery and sciatic nerve injury. Int. J. Mol. Sci. 25, 10989. https://doi.org/10.3390/ijms252010989
- Hu X., Liu Y., Wu J., Liu Y., Liu W., Chen J., Yang F. 2020. Inhibition of P2X7R in the amygdala ameliorates symptoms of neuropathic pain after spared nerve injury in rats. Brain. Behav. Immun. 88, 507–514. https://doi.org/10.1016/j.bbi.2020.04.030
- Kuebart A., Wollborn V., Huhn R., Hermanns H., Werdehausen R., Brandenburger T. 2020. Intraneural application of microRNA-1 mimetic nucleotides does not resolve neuropathic pain after chronic constriction injury in rats. J. Pain Res. 3, 2907–2914. https://doi.org/10.2147/JPR.S266937
- Konnova E.A., Deftu A.F., Chu Sin Chung P., Pertin M., Kirschmann G., Decosterd I., Suter M.R. 2023. Characterisation of GFAP-Expressing glial cells in the dorsal root ganglion after spared nerve injury. Int. J. Mol. Sci. 24, 15559. https://doi.org/10.3390/ijms242115559
- Dennis E.L., Baron D., Bartnik‐Olson B., Caeyenberghs K., Esopenko C., Hillary F.G., Kenney K., Koerte I.K., Lin A.P., Mayer A.R., Mondello S., Olsen A., Thompson P.M., Tate D.F., Wilde E.A. 2022. ENIGMA brain injury: Framework, challenges, and opportunities. Hum. Brain Mapp. 43, 149–166. https://doi.org/10.1002/hbm.25046
- Nakase T., Naus C.C.G. 2004. Gap junctions and neurological disorders of the central nervous system. Biochim. Biophys. Acta – Biomembr. 1662, 149–158. https://doi.org/10.1016/j.bbamem.2004.01.009
- Uzu M., Sin W., Shimizu A., Sato H. 2018. Conflicting roles of Connexin43 in tumor invasion and growth in the central nervous system. Int. J. Mol. Sci. 19, 1159. https://doi.org/10.3390/ijms19041159
Supplementary files


