Synthesis, structure and properties of catalysts based on amorphous metal nanoparticles
- Authors: Gurevich S.A.1, Rostovshchikova T.N.2, Yavsin D.A.1
-
Affiliations:
- Ioffe Institute
- Moscow State University
- Issue: Vol 44, No 9 (2025)
- Pages: 93-114
- Section: ХИМИЧЕСКАЯ ФИЗИКА НАНОМАТЕРИАЛОВ
- URL: https://bakhtiniada.ru/0207-401X/article/view/308828
- DOI: https://doi.org/10.31857/S0207401X25090082
- ID: 308828
Cite item
Abstract
This work, which is mainly a review, discusses synthesis, structure and properties of catalysts comprising deposited amorphous metal nanoparticles. Considered are physical principles and features of the laser electrodispersion (LED) technique, which allows production of amorphous Pt, Pd, Ni, Cu, Au nanoparticles, as well as amorphous alloy particles such as NiPd, NiMo, NiW and deposition them on oxide, carbon and zeolites carriers. The results of studies of the catalysts structure are presented and catalysts behavior in the processes of hydrogenation, isomerization, addition, cross-coupling and others are discussed. The extremely high specific activity and stability of LED catalysts is considered in relation with the amorphous state of metal nanoparticles.
About the authors
S. A. Gurevich
Ioffe Institute
Email: gurevich@quantel.ioffe.ru
St. Petersburg, Russia
T. N. Rostovshchikova
Moscow State University
Email: gurevich@quantel.ioffe.ru
Moskow, Russia
D. A. Yavsin
Ioffe Institute
Author for correspondence.
Email: gurevich@quantel.ioffe.ru
St. Petersburg, Russia
References
- Rampino L.D., Nord F. F. // J. Am. Chem. Soc. 1941. V. 63. P. 2745. https://doi.org/10.1021/ja01855a070
- Haruta M., Kobatashi T., Sano H., Yamada N. // Chem. Lett. 1987. V. 16. P.405. https://doi.org/10.1246/cl.1987.405
- Ndolomingo M.J., Bingwa N., Meijboom R. // J. Mater. Sci. 2020. V. 55. P. 6195. https://doi.org/10.1007/s10853-020-04415-x
- Wang H., Lu J. // Chin. J. Chem. 2020. V. 38. P. 1422. https://doi.org/10.1002/cjoc.202000205
- Ahmadi M., Mistry H., Cuenya B. R. // J. Phys. Chem. Lett. 2016. V. 7. P. 3519. https://doi.org/10.1021/acs.jpclett.6b01198
- Guo L., Zhou J., Liu F. et al. // ACS Nano. 2024. V. 18. P. 9823. https://doi.org/10.1021/acsnano.4c01456
- Pelegrina J.L., Gennari F.C., Condó A.M., Guillermet A.F. // J. Alloys Compd. 2016. V. 689 P. 161. https://doi.org/10.1016/j.jallcom.2016.07.284
- Liang S.X., Zhang L.C., Reichenberger S., Barcikowski S. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 11121. https://doi.org/10.1039/D1CP00701G
- Chen X., Lv S., Su Z. et al. // Chem. Catal. 2024. V. 4. P. 100871. https://doi.org/10.1016/j.checat.2023.100871
- Tan M., Huang B., Su L. et al. // Adv. Energy Mater. 2024. V. 14. P. 2402424. https://doi.org/10.1002/aenm.202402424
- Kozhevin V. M., Yavsin D. A., Kouznetsov V. M. et al. // J. Vac. Sci. Technol. B. 2000. V. 18. P. 1402. https://doi.org/10.1116/1.591393
- Likharev K. K. // Proc. IEEE. 1999. V. 87. P. 606. https://doi.org/10.1109/5.752518.
- Synthesis, structure and properties of metal/semiconductor containing nanocomposites / Eds. Trakhtenberg L.I., Melnikov M.Ya. М.: Technosphere. 2016. Сh. 13.
- Rostovshchikova T.N., Lokteva E.S., Shilina M.I. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. № 3. P. 451. https://doi.org/10.1134/S0036024421030171
- Yetik G., Troglia A., Farokhipoor S. et al. // Surf. Coat. Technol. 2022. V. 445. P. 128729. https://doi.org/10.1016/j.surfcoat.2022.128729
- Pampillo C.A. // J. Mater. Sci. 1975. V. 10. P. 1194. https://doi.org/10.1007/BF00541403
- Grigorian C.M., Rupert T.J. // Acta Mater. 2021. V. 206. P. 116650. https://doi.org/10.1016/j.actamat.2021.116650
- Zhang D., Gökce B., Barcikowski S. // Chem. Rev. 2017. V. 117. P. 3990. https://doi.org/10.1021/acs.chemrev.6b00468
- Gurevich S.A., Kozhevin V.M., Yassievich I.N. et al. Thin Films and Nanostructures. Physico-Chemical Phenena in Thin Films and at Solid Surfaces. Elsevier: Amstredam, 2007. V. 34. Ch. 15.
- Brailovsky A.B., Gaponov S.V., Luchin V.I. // Appl. Phys. A. 1995. V. 61. P. 81. https://doi.org/10.1007/BF01538216
- Rayleigh L. // Philos. Mag. 1882. V. 14. P. 184.
- Grigor’ev A.I., Shiryaeva S.O. // J. Aerosol Sci. 1994. V. 25. P. 1079. https://doi.org/10.1016/0021-8502(94)90203-8
- Bormatov A.A., KozhevinV.M., Gurevich S.A. // Tech. Phys. 2021. V. 66. P. 705. https://doi.org/10.1134/S1063784221050078
- Synthesis, structure and properties of metal/semiconductor containing nanocomposites / Eds. Trakhtenberg L.I., Melnikov M.Ya. М.: Technosphere. 2016. Сh. 4.
- Akbari A., Amini M., Tarassoli A., et al. // Nano-Struct. Nano-Objects. 2018. V. 14. P. 19. https://doi.org/10.1016/j.nanoso.2018.01.006
- Cuenya B.R. // Thin Solid Films. 2010. V. 518. P. 3127. https://doi.org/10.1016/j.tsf.2010.01.018
- Rostovshchikova T.N., Shilina M.I., Gurevich S.A. et al. // Dokl. Phys. Chem. 2022. V. 506. P. 123. https://doi.org/10.1134/S001250162260019X
- Shilina M.I., Krotova I.N., Maksimov S.V. et al. // Russ. Chem. Bull. 2023. V. 72. P. 1518. https://doi.org/10.1007/s11172-023-3930-y
- Golubina E.V., Rostovshchikova T.N., Lokteva E.S. et al. // Applied Surface Science. 2021. V. 536. P. 147656. https://doi.org/10.1016/j.apsusc.2020.147656
- Bryzhin A., Golubina E., Maslakov K. et al. // ChemCatChem. 2020. V. 12. № 17. P. 4396. https://doi.org/10.1002/cctc.202000501
- Cuevas E., Ortuno M., Ruiz J. // Phys. Rev. Lett. 1993. V. 71. P. 1871. https://doi.org/10.1103/PhysRevLett.71.1871
- Vorontsov P.S., Gerasimov G.N., Golubeva E.N. et al. // Russ. J. Phys. Chem. A. 1998. V. 72. № 10. P. 1912.
- Trakhtenberg L.I., Gerasimov G.N., Grigoriev E.I. et al. // Stud. Surf. Sci. Catal. 2000. V. 130. P. 941.
- Trakhtenberg L.I., Gerasimov G.N., Ponapov V.K. et al. // Moscow University Bull. 2. Chemistry. 2001. V. 42. № 5. С. 325 (in Russian).
- Kozhevin V.M., Rostovshikova T.N., Yavsin D.A. et al. // Dokl. Phys. Chem. 2002. V. 387. P. 324. https://doi.org/10.1023/A:1021706931622
- Zakheim D.A., Rozhansky I.V., Smirnova I.P., Gurevich S.A. // J. Exp. Theor. Phys. 2000. V. 91. P. 553. https://doi.org/10.1134/1.1320091
- Il`yushchenkov D.S., Kozhevin V.M., Gurevich S.A. // Phys. Solid State. 2015. V. 57. P. 1710. https://doi.org/10.1134/S1063783415090115
- Gurevich S.A., Kozhevin V.M., Il’yushenkov D.S. // Phys. Solid State. 2019. V. 61. P. 1683. https://doi.org/10.1134/S1063783419100184
- Shaik S., Danovich D., Joy J., Wang Zh., Stuyver Th. // J. Am. Chem. Soc. 2020. V. 142. P. 12551. https://doi.org/10.1021/jacs.0c05128
- Rostovshchikova T.N., Smirnov V.V., Gurevich S.A. et al. // Catal. Today. 2005. V. 105. № 3-4. P. 344. https://doi.org/10.1016/j.cattod.2005.06.034
- Rostovshchikova T.N., Smirnv V.V., Kozhevin V.M., Yavsin D.A., Gurevich S.A. // Rus. Nanotechnol. 2007. V. 2. № 1–2. P. 47 (in Russian).
- Rostovshchikova T.N., Smirnov V.V., Kozhevin V.M. et al. // Appl. Catal. A: General. 2005. V. 296. № 1. P. 70. https://doi.org/10.1016/j.apcata.2005.08.032
- Nevskaya S.M., Nikolaev S.A., Noskov Yu. G. et al. // Kinetics and Catalysis. 2006. V. 47. № 4. P. 638. https://doi.org/10.1134/S0023158406040203
- Lokteva E.S., Rostovshchikova T.N., Kachevskii S.A. et al. // Kinetics and Catalysis. 2008. V. 49. № 5. P. 748. https://doi.org/10.1134/S0023158408050212
- Rostovshchikova T.N., Lokteva E.S., Kachevskii S.A. et al. // Catalysis in Industry. 2009. V. 1. № 3. P. 214. https://doi.org/10.1134/S2070050409030088
- Lokteva E.S., Peristyy A.A., Kavalerskaya N.E. et al. // Pure Appl. Chem. 2012. V. 84. P. 495. https://doi.org/10.1351/PAC-CON-11-07-12
- Kavalerskaya N.E., Lokteva E.S., Rostovshchikova T.N., Golubina E.V., Maslakov K.I. // Kinetics and Catalysis. 2013. V. 54. № 5. P. 597. https://doi.org/10.1134/s0023158413050066
- Golubina E.V., Rostovshchikova T.N., Lokteva E.S. et al. // Pure Appl. Chem. 2018. V. 90. № 11. P. 1685. https://doi.org/10.1515/pac-2018-0207
- Rostovshchikova T.N., Nikolaev S.A., Krotova I.N. et al. // Russ. Chem. Bull. 2022. V.71. № 6. P. 1179. https://doi.org/10.1007/s11172-022-3519-x
- Rostovshchikova T.N., Shilina M.I., Gurevich S.A. et al. // Materials. 2023. V. 16. № 9. P. 3501. https://doi.org/10.3390/ma16093501
- Rostovshchikova T.N., Shilina M.I., Maslakov K.I. et al. // Materials. 2023. V. 16. № 12. P. 4423. https://doi.org/10.3390/ma16124423
- Rostovshchikova T.N., Shilina M.I., Golubina E.V. et al. // Russ. Chem. Bull. 2015. V. 64. № 4. P. 812. https://doi.org/10.1007/s11172-015-0938-y
- Golubina E.V., Lokteva E.S., Maslakov K.I. et al. // Nanotechnol. Russia. 2017. V. 12. № 1–2. P. 19. https://doi.org/10.1134/S1995078017010049
- Shilina M., Krotova I., Nikolaev S. et al. // Hydrogen. 2023.V. 4. № 1. P. 154. https://doi.org/10.3390/hydrogen4010011
- Matieva Z.M., Nikolaev S.A., Snatenkova Y.M. et al. // J. Chem. Tech. Biotech. 2022. V. 97. № 7. P. 1792. https://doi.org/10.1002/jctb.7050
- Bryzhin A.A., Tarkhanova I.G., Maslakov K.I. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. № 10. P. 1976. https://doi.org/10.1134/S0036024419100029
- Bryzhin A.A., Rostovshchikova T.N., Maslakov K.I. et al. // Kinetics and Catalysis. 2021. V. 62. № 6. P. 828. https://doi.org/10.1134/S0023158421060033
- Schmidt A.F., Kurokhtina A.A., Larina E.V. et al. // Kinetics and Catalysis. 2023. V. 64. № 1. P. 32. https://doi.org/10.1134/S0023158423010081
- Schmidt A.F., Kurokhtina A.A., Larina E.V. et al. // Mendeleev Commun. 2023. V. 33. № 1. P. 177. https://doi.org/10.1016/j.mencom.2023.02.009
- Gatin A.K., Grishin M.V., Gurevich S.A. et al. // Russ. Chem. Bull. 2015. V. 64. № 10. P. 2337. https://doi.org/10.1134/S1990793117030186
- Gatin A.K., Grishin M.V., Gurevich S.A. et al. // Nanotechnol. Russia. 2015. V. 10. № 11-12. P. 850. https://doi.org/10.1134/S199507801506004X
- Freund H.-J., Meijer G., Scheffler M., Schlőgl R., Wolf M. // Angew. Chem., Int. Ed. 2011. V. 50. P. 10064. https://doi.org/10.1002/anie.201101378.
- Wang Sh., Li X., Lai Ch. et al. // RSC Adv. 2024. V. 14. P. 30566. https://doi.org/10.1039/D4RA05102E
- Tripathi A., Hareesh C., Sinthika S., Andersson G., Thapa R. // Appl. Surf. Sci. 2020. V. 528. P. 146964. https://doi.org/10.1016/j.apsusc.2020.146964.
- Lin J., Wang X., Zhang T. // Chin. J. Catal. 2016. V. 37. № 11. P. 1805. https://doi.org/10.1016/S1872-2067(16)62513-5.
- Wu L., Fan W., Wang X. et al. // Catalysts. 2023. V. 13. № 3. P. 604. https://doi.org/10.3390/catal13030604
- Gao M., Gong Z., Weng X. et al. // Chin. J. Catal. 2021. V. 42. № 10. P. 1689. https://doi.org/10.1016/S1872-2067(20)63775-5
- Xie Y., Zhang L., Jiang Y. et al. // Catal. Today. 2021. V. 364. P. 16. https://doi.org/10.1016/j.cattod.2019.11.030
- Beletskaya I.P., Alonso F., Tyurin V. // Coord. Chem. Rev. 2019. V. 385. P. 137. https://doi.org/10.1016/j.ccr.2019.01.012.
- Hong K., Sajjadi M., Suh J.M. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 3. P. 2070. https://doi.org/10.1021/acsanm.9b02017
- Galushko A.S., Boiko D.A., Pentsak E.O., Eremin D.B., Ananikov V.P. // J. Am. Chem. Soc, 2023. V. 145. № 16. P. 9092. https://doi.org/10.1021/jacs.3c00645
- Shilina M.I., Rostovshchikova T.N., Nikolaev S.A., Udalova O.V. // Mater. Chem. Phys. 2019. V. 223. P. 287. https://doi.org/10.1016/j.matchemphys.2018.11.005
- Jing P., Gong X., Liu B., Zhang J. // Catal. Sci. Technol. 2020. V. 10. № 4. P. 919. https://doi.org/10.1039/D4CY01142B
- Liu H., Li D., Guo J. et al. // Nano Res. 2023. V. 16. № 4. P. 4399. https://doi.org/10.1007/s12274-022-5182-9
- Grishin M.V., Gatin A.K., Sarvadii S.Yu. et al. // Russ. J. Phys. Chem. B. 2020. V. 14. № 4. P. 697. https://doi.org/10.1134/S1990793120040065
- Forsythe R.C., Cox C.P., Wilsey M.K., Muller A.M. // Chem. Rev. 2021. V. 121. № 13. P. 7568. https://doi.org/10.1021/acs.chemrev.0c01069
Supplementary files
