Ignition and combustion of pyrophoric iron particles during free fall in air
- 作者: Vadchenko S.G.1, Alymov M.I.1
-
隶属关系:
- Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- 期: 卷 44, 编号 9 (2025)
- 页面: 62-74
- 栏目: Combustion, explosion and shock waves
- URL: https://bakhtiniada.ru/0207-401X/article/view/308825
- DOI: https://doi.org/10.31857/S0207401X25090051
- ID: 308825
如何引用文章
详细
The ignition and combustion of aggregates of pyrophoric iron nanoparticles and their combination during their free fall in the air atmosphere was studied using the method of video recording of motion tracks. The composition and microstructure of combustion products were determined. The possibility of heating iron nanoparticles to the ignition temperature at the stage of oxygen chemisorption on their surface was estimated.
作者简介
S. Vadchenko
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: vadchenko@ism.ac.ru
Moscow, Russia
M. Alymov
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: vadchenko@ism.ac.ru
Moscow, Russia
参考
- Sergeev G.B. // Russ. Chem. Rev. 2001. V. 70. № 10. P. 809. https://doi.org/10.1070/RC2001v070n10ABEH000671
- Huber D.L. // Small. 2005. V. 1. Issue 5. P. 482. https://doi.org/10.1002/smll.200500006
- Gromov A.A., Teipel U. Metal Nanopowders: Production, Characterization, and Energetic Applications. N.Y.: John Wiley & Sons, 2014. P. 417. https://doi.org/10.1002/9783527680696
- Zarko V.E., Gromov A.A. Energetic Nanomaterials: Synthesis, Characterization, and Application. 1st edition. Publisher: Elsevier, 2016. ISBN: 9780128027103
- Berner M.K., Zarko V.E., Talawar M.B. Combust Explos Shock Waves. 2013. V. 49. P. 625. https://doi.org/10.1134/S0010508213060014
- Zarko V., Glazunov A. // Nanomaterials. 2020. V. 10(10), 2008. https://doi.org/10.3390/nano10102008
- Bouillard J., Vignes A., Dufaud O. et al. // J. Hazard. Mater. 2010. V. 181. № 1–3. P. 873. https://doi.org/10.1016/j.jhazmat.2010.05.094
- Sundaram D., Yang V., Zarko V.E. // Combustion, Explosion and Shock Waves. 2015. V. 51. № 2. P. 173. https://doi.org/10.1134/S0010508215020045
- Hu Z., Boiadjiev V., Thundat T. // Energy Fuels. 2005. V. 19. № 3. 855. https://doi.org/10.1021/ef0496754
- Alymov M.I., Vadchenko S.G., Seplyarskii B.S. et al. // Doklady Chemistry. 2020. V. 495. P. 182. https://doi.org/10.1134/S0012500820110014
- Alymov M.I., Seplyarskii B.S., Vadchenko S.G. et al.// Russ. J. Phys. Chem. B. 2021. V. 15. №. 2. P. 352. https://doi.org/10.1134/S1990793121020135
- Haneda K., Morrish A. // Nature. 1979. V. 282. P. 186.https://doi.org/10.1038/282186a0
- Sokolov I., Sharafoutdinov R. // Nuclear and Radiation Safety J. 2018. № 2. P. 1 (in Russian).
- Sokolov I.P. // Ibid. 2016. № 1. P. 1 (in Russian).
- Mi X., Fujinawa A., Bergthorson J. M. // Combust. and Flame. 2022. V. 240. 112011. https://doi.org/10.1016/j.combustflame.2022.112011
- Korshunov A.V.// Bulletin of the Tomsk Polytechnic University. 2011. V. 318. № 3. P. 5 (in Russian).
- Gorokhov Y.M. // Soviet Powder Metall. Metal Ceramic. 1964. V. 3. № 1. P. 82. https://doi.org/10.1007/BF00774331
- Panahi A., Chang D., Schiemann M. et al. // Appl. Energy Combust. Sci. 2023. V. 13. 100097. https://doi.org/10.1016/j.jaecs.2022.100097
- Krietsch A., Scheid M., Schmidt M., Krause U. // J. Loss Prevention Proc. Industries. 2015. V. 36. P. 237. https://doi.org/10.1016/j.jlp.2015.03.016
- Korshunov A.V. // Russ. J. Phys. Chem. B. 2012. V. 6. № 3. P. 368. https://doi.org/10.1134/S1990793112050053
- Ivanov V.G., Gavrilyuk O.V. // Combust. Explos. Shock Waves. 1999. V. 35. P. 648. https://doi.org/10.1007/BF02674538
- Leshchevich V.V., Penyazkov O.G., Fedorov A.V. et al. // J. Eng. Phys. Thermophys. 2012. V. 85. № 1. P. 148. https://doi.org/10.1007/s10891- 012- 0632- y
- Schlöffel G., Eichhorn A., Albers H. et al. // Combust. and Flame. 2010. V. 157. № 3. P. 446. https://doi.org/10.1016/j.combustflame.2009.12.001
- Song Q., Cao W., Wei X. et al. // Ibid. 2021. V. 230. 111420. https://doi.org/10.1016/j.combustflame.2021.111420
- Ning D., Shoshin Y., J.A. van Oijen et al. // Ibid. 2021. V. 230. P.111424. https://doi.org/10.1016/j.combustflame.2021.111424
- Belousova N.S., Glotov O.G., Guskov A.V. // J. Phys.: Conf. Ser. 2019. 1214 012010. https://doi.org/10.1088/1742-6596/1214/1/012010
- Glotov O.G. // Uspekhi Fizicheskikh Nauk. 2019. V. 189. № 2. P. 135. https://doi.org/10.3367/UFNr.2018.04.038349
- Vignes A., Krietsch A., Dufaud O. et al. // J. Hazard. Mater. 2019. V. 379. № 5. 120767. https://doi.org/10.1016/j.jhazmat.2019.120767
- Wang C.M., Baer D.R., Thomas L.E. et al. // J. Appl. Phys. 2005. V. 98. 094308. https://doi.org/10.1063/1.2130890
- Alymov M.I., Seplyarskii B.S., Vadchenko S.G. et al. // Mendeleev Commun., 2020. V. 30. P. 380. https://doi.org/10.1016/j.mencom.2020.05.040
- Alymov M. I., Seplyarskii B. S., Vadchenko S. G. et al. // Engineering Phys. 2019. № 10. P. 14 (in Russian). http://dx.doi.org/10.25791/infizik.10.2019.915
- Alymov M.I., Rubtsov N.M., Seplyarskii B.S. et al. // Mendeleev Communications. 2017. V.27. № 5. P. 482. https://doi.org/10.1016/j.mencom.2017.09.017
- Logachev I.N., Logachev K.I. Aerodynamic principles of aspiration. St. Petersburg: Khimizdat. 2005 (in Russian).
- Arkhipov V.A., Usanina A.S. Movement of aerosol particles in a flow: study guide. Tomsk: Publishing House of Tomsk State University, 2013. Tomsk: Izd. Tomsk. Univ., 2013(in Russian). http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000463973
- Shishkin A.S., Shishkin S.F. Examples of calculations of aerodynamic processes for processing bulk materials in EXCEL.Ekaterinburg: Information portal of UrFU (in Russian). http://study.urfu.ru 2015
- Yagodnikov D.A. Combustion of Powder Metals in Gas-Dispersion Systems Moscow: Izd. Mosk. Gos. Tekh. Univ. Baumana, 2018 (in Russian).
- Tang F.D., Goroshin S., Higgins A.J. // Proc. Combust. Inst. 2011. V. 33. № 2. P. 1975. https://doi.org/10.1016/j.proci.2010.06.088.
- Hazenberg T., J.A. van Oijen // Ibid. 2021. V. 38. № 3. P. 4383. https://doi.org/10.1016/j.proci.2020.07.058
- Arkhipov V.A., Usanina A.S. // J. Eng. Phys. Thermophy. 2017. V. 90. P. 1061 (in Russian). https://doi.org/10.1007/s10891-017-1657-z
- Chernavskii P.A., Pankina G.V., Zaikovskii V.I. et al. //Russian Journal of Physical Chemistry A. 2008. V. 82. № 4. P. 690. https://doi.org/10.1134/S0036024408040341
- Païdassi J. // Acta Metallurgica. 1958. V. 6. № 3. P. 184. https://doi.org/10.1016/0001-6160(58)90006-3.
- Boggs W.E., Kachik R.H., Pellissier G.E. // J. Electrochem. Soc. 1967. V. 114. № 1. P. 32. https://doi.org/10.1149/1.2426502
- Fung K.K., Qin B., Zhang X.X. // Mater. Sci. Eng., A. 2000. V. 286. № 1. P. 135. https://doi.org/10.1016/S0921-5093(00)00717-6
- Encyclopedia.Pyrophoricity. P. 64 (in Russian). https://pozhproekt.ru
- Soo M., Mi X., Goroshin S. et al. // Combust. Flame. 2018. V. 192. P. 384. https://doi.org/10.1016/j.combustflame.2018.01.032
- Zemsky G.T., Kondratyuk N.V. // Fire safety. 2019. № 3. P. 104 (in Russian).
- Allen D., Glumac, N., Krier H. // Combust. Flame. 2014. V. 161. P. 295. https://doi.org/10.1016/j.combustflame.2013.07.010
- Sundaram D.S., Puri P., Yang V. // Ibid. 2013. V. 160. № 9. P. 1870. https://doi.org/10.1016/j.combustflame.2013.03.031
- Seplyarsky B.S., Ivleva T.P. and Alymov M.I. // Nanotechnol. in Russia. 2017. V. 12. № 11–12. P. 583 (in Russian). https://doi.org/10.1134/S1995078017060088
- Seplyarskii, B.S., Ivleva, T.P., Alymov, M.I. // Dokl. Phys. Chem. 2018. V. 478. P. 23. https://doi.org/10.1134/S0012501618010062
- Altman I.S. // J. Aerosol Sci. 1999. V. 30. № 1. P. S423. https://doi.org/10.1016/S0021-8502(99)80223-7
- Altman I.S. // J. Phys. Studies. 1999. V. 3. № 4. P. 456. https://doi.org/10.30970/jps.03.456
- Glassman I., Papas P., Brezinsky K. // Combust. Sci. Tech. 1992. V. 83. P. 161. https://doi.org/10.1080/00102209208951829
- Sun J.H., Dobashi R., Hirano T. // Ibid. 2000. V. 150. № 1–6. P. 99. https://doi.org/10.1080/00102200008952119
- Mugtasimov A.V., Peskov N.V., Pankina G.V. et al. // Russ. J. Phys. Chem.A. 2011. V. 85. P. 217. https://doi.org/10.1134/S0036024411020257
- Chernavskii P.A., Pankina G.V., Peskov N.V. et al. // J. Phys. Chem.C. 2007. V. 111. № 15. P. 5576. https://doi.org/10.1021/jp065162h
- Chernavskii P.A., Peskov N.V., Mugtasimov A.V., Lunin V.V. // Russ. J. Phys. Chem. B 1. 2007. V. 1. № 4. P. 394. https://doi.org/10.1134/S1990793107040082
- Vadchenko S.G., and Alymov M.I. // Russ. J. Phys. Chem. B. 2022. V. 16. № 2. P. 236. https://doi.org/10.1134/S1990793122020130.
- Alymov M.I., Seplyarskii B.S., Kochetkov R.A. // Russ. J. Phys. Chem. B. 2023 V. 17. P. 1005. https://doi.org/10.1134/S1990793123040218
- Alymov M.I., Rubtsov N.M., Seplyarskii B.S. et al. // Nanotechnol. Russia.2017. V. 12. № 5–6. P. 8 (in Russian). https://doi.org/10.1134/S1995078017030028
- Scorchiletti V.V. Theoretical foundations of metal corrosion. Leningrad: Chemistry, 1973 (in Russian).
- Kofstad P. High Temperature Oxidation of Metals. Published by. N.Y.: John Wiley and Sons, Inc., 1966.
- Alymov M.I., Vadchenko S.G., Suvorova E.V. et al. // Dokl. Phys. Chem. 2019. V. 488. P. 143. https://doi.org/10.1134/S0012501619100014
补充文件
