Deuterium substitution and charge retention in ions of organic and bioorganic compounds. Part 1. Apamin
- Autores: Raznikov V.V.1, Raznikova M.O.2, Pihtelev A.R.1, Filatov S.V.1, Sulimenkov I.V.1
-
Afiliações:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Edição: Volume 44, Nº 9 (2025)
- Páginas: 3-21
- Seção: Элементарные физико-химические процессы
- URL: https://bakhtiniada.ru/0207-401X/article/view/308821
- DOI: https://doi.org/10.31857/S0207401X25090015
- ID: 308821
Citar
Resumo
This work continues the development of a new method for detecting different structural forms of biomolecules or organic compounds by analyzing hydrogen/deuterium exchange mass spectra of multiply charged (z > 1) or singly charged (z = 1) ions. The method is based on the best approximation of experimental mass spectra obtained by electrospray ionization of electrolyte solutions using a linear combination of several H/D/z distributions, assuming independent substitution of exchangeable hydrogen atoms with deuterium and independent retention of a certain number of charge carriers. The method is tested using apamin, an 18-amino acid polypeptide with a molecular mass of about 2025.886 Da. The relation between the obtained mass spectral components and the structural forms of apamin formed during hydrogen/deuterium exchange is analyzed. The comparison is made for conditions with and without the addition of ND3-containing gas.
Sobre autores
V. Raznikov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: raznikova.mari@yandex.ru
Moscow, Russia
M. Raznikova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: raznikova.mari@yandex.ru
Chernogolovka, Russia
A. Pihtelev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: raznikova.mari@yandex.ru
Moscow, Russia
S. Filatov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: raznikova.mari@yandex.ru
Moscow, Russia
I. Sulimenkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: raznikova.mari@yandex.ru
Moscow, Russia
Bibliografia
- Kaltashov I.A., Abzalimov R.R. // J. Am. Soc. Mass Spectrom. 2008. V. 19. № 8. P. 1239. https://doi.org/10.1016/j.jasms.2008.05.018
- Frimpong A.K., Abzalimov R.R., Uversky V.N., Kaltashov I.A. // Proteins. 2010. V. 78. № 3. P. 714. https://doi.org/10.1002/prot.22604
- Raznikova M.O., Raznikov V.V. // Khim. Fizika. 2001. V. 20. № 4. P. 13.
- Raznikov V.V., Raznikova M.O., Sulimenkov I.V. // Anal. Bioanal. Chem. 2019. V. 411. № 24. P. 6409. https://doi.org/10.1007/s00216-019-02019-2
- Stepanov V.M. Molecular biology. Structure and functions of proteins. Moscow: Nauka, 2005.
- Masson G.R., Burke J.E., Ahn N.G. et al. // Nature Methods. 2019. V. 596. P. 595. https://doi.org/10.1038/s41592-019-0459-y
- Abzalimov R.R., Kaltashov I.A. // J. Am. Soc. Mass Spectrom. 2006. V. 17. № 11. P. 1543. https://doi.org/10.1016/j.jasms.2006.07.017.
- Xiao H., Hoerner J.K., Eyles S.J. et al. // Protein Sci. 2005. V. 14. № 2. P. 543. https://doi.org/10.1110/ps.041001705
- Kostyukevich Y., Acter T., Zherebker A. et al. // Mass Spectrom. Rev. 2018. V. 37. № 6. P. 1. https://doi.org/10.1002/mas.21565
- Raznikova M.O., Raznikov V.V. // Khim. Fizika. 2005. V. 24. № 1. P. 13.
- Raznikov V.V., Raznikova M.O. // Eur. J. Mass Spectrom. 2009. V. 15. P. 367.
- Raznikova M.O., Raznikov V.V. // Molecular Biology. 2015. V. 49. № 5. P. 728. https://doi.org/10.1134/S0026893315050143
- Raznikova M.O., Raznikov V.V. // Russ. J. Phys. Chem. B. 2018. V. 12. № 2. P. 271. https://doi.org/10.1134/S1990793118020252
- Raznikov V.V., Raznikova M.O., Pridatchenko M.L. // Mass-Spectrometry. 2016. V.13. № 2. P. 124.
- Raznikov V.V., Zelenov V.V., Aparina E.V., Sulimenkov I.V., Raznikova M.O. // Mass-Spectrometry. 2020. V. 17. №. 2. P. 103. https://doi.org/10.25703/MS.2020.17.26
- Kostyukevich Y., Kononikhin A., Popov I., Nikolaev E. // Anal. Chem. 2013. V. 85. P. 5330. https://doi.org/10.1021/ac4006606
- Dodonov A.F., Kozlovski V.I., Soulimenkov I.V. et al. // Eur. J. Mass Spectrom. 2000. V. 6. № 6. P. 481. https://doi.org/10.1255/ejms.378
- Raznikov V.V., Raznikova M.O., Sulimenkov I.V., Zelenov V.V. // Anal. Bioanal. Chem. 2023. V.415. № 12. P.2193. https://doi.org/10.1007/s00216-023-04625-7
- Dempsey C.E. // Biochemistry. 1986. V. 25. P. 3904. https://doi.org/10.1021/bi00361a025
- Suvorina M.Y., Surin A.K., Dovidchenko N.V., Lobanov M.Y., Galzitskaya O.V. // Biochemistry (Moscow). 2012. V. 77. P. 616. https://doi.org/10.1134/S0006297912060089
- Wang F, Tang X. // Biochemistry. 1996. V.35. P. 4069. https://doi.org/10.1021/bi9521304
- Kramer G. Mathematical Methods of Statistics. Moscow: Mir, 1975.
- Raznikov V.V., Raznikova M.O. // Int. J. Mass Spectrom. Ion Processes. 1985. V.63. P. 157. https://doi.org/10.1016/0168-1176(85)80023-9
- Raznikov V.V., Raznikova M.O. // Int. J. Mass Spectrom. Ion Processes. 1991. V.103. P. 67. https://doi.org/10.1016/0168-1176(91)80079-3
- Dubovitskii V.A., Irzhak V.I. // Polym. Sci. B. 2005. V.47. № 1. P. 22.
- Kuzmenkov A.I., Peigneur S., Nasburg J.A. et al. // Front. Pharmacol. 2022. V. 13. 977440. https://doi.org/10.3389/fphar.2022.977440
- Raznikov V.V., Raznikova M.O., Sulimenkov I.V., Zelenov V.V. // Mass-Spectrometry. 2023. V. 20. № 2. P. 77. https://doi.org/10.25703/MS.2023.20.08
- Chen S.H., Russell D.H. // J. Am. Soc. Mass Spectrom. 2015. V. 26. № 9. P. 1433. https://doi.org/10.1007/s13361-015-1191-1
- Purves R.W., Barnett D.A., Guevremont R. // Int. J. Mass Spectrom. 2000. V. 197. P. 163. https://doi.org/10.1016/S1387-3806(99)00240-7
- Moskalenko I.V., Tikhonov I.V. // Russ. J. Phys. Chem. B. 2022. V. 16. № 4. P. 602. https://doi.org/10.1134/S1990793122040121
- Shaitan K.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 550. https://doi.org/10.1134/s1990793123030259
- Shishkina L.N., Kozlov M.V., Konstantinova T.V., Smirnova A.N., Shvydkiy V.O. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 141. https://doi.org/10.1134/S1990793123010104
- Smirnova A.N., Shvydkiy V.O., Shishkina L.N. // Russ. J. Phys. Chem. B. 2021. V. 15. № 4. P. 710. https://doi.org/10.1134/S1990793121040102
- Yakovleva M.A., Radchenko A.S., Kostyukov A.A. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 1. P. 90. https://doi.org/10.1134/S199079312201033X
- Vasilieva A.D., Yurina L.V., Azarova D.Y. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 1. P. 118. https://doi.org/10.1134/S1990793122010316
- Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 821. https://doi.org/10.1134/S199079312470024
Arquivos suplementares
