Влияние содержания кобальта и механической активации на горение в системе Ni + Al + Co

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе исследовано влияние механической активации (МА) и содержания кобальта на скорость и максимальную температуру горения, удлинение образцов в процессе синтеза, размер композитных частиц смеси после МА, фазовый состав и морфологию продуктов горения в системе Ni + Al + Co. Активация смеси Ni + Al + xCo позволила реализовать горение образцов при комнатной температуре и содержании кобальта до 50 мас. %. Увеличение содержания кобальта в смесях Ni + Al + хCo приводило к уменьшению размера композитных частиц после МА, удлинения образцов продуктов и максимальной температуры синтеза. После МА многократно возросли удлинение образцов продуктов и скорость горения, увеличилась максимальная температура синтеза. С увеличением содержания кобальта в смеси Ni + Al + Co скорость горения сначала возрастает (при содержании Со 10%), а затем убывает. Методом самораспространяющегося высокотемпературного синтеза синтезированы твердые растворы на основе интерметаллидов NiAl и Ni3Al.

Полный текст

Доступ закрыт

Об авторах

Н. А. Кочетов

Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук

Автор, ответственный за переписку.
Email: kolyan_kochetov@mail.ru
Россия, Черноголовка

И. Д. Ковалев

Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук

Email: kolyan_kochetov@mail.ru
Россия, Черноголовка

Список литературы

  1. Kelly S.C., Thadhani N.N. // J. Appl. Phys. 2016. V. 119. P. 95903. https://doi.org/10.1063/1.4942931
  2. Pogozhev Yu.S., Sanin V.N., Ikornikov D.M. et al. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 3. P. 186. https://doi.org/10.3103/S1061386216030092
  3. Sanin V.N., Ikornikov D.M., Andreev D.E. et al. // Ibid. 2014. V. 23. № 4. P. 232. https://doi.org/10.3103/S1061386214040098
  4. Сеплярский Б.С., Абзалов Н.И. Кочетков Р.А. и др. // Хим. физика. 2021. Т. 40. № 3. С. 23. https://doi.org/10.31857/S0207401X2103010925
  5. Suryanarayana C. // Prog. Mater. Sci. 2001. V. 46. P. 1.
  6. Wang J. // J. Alloys and Comp. 2008. V. 456. P. 139.
  7. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2022. Т. 41. № 1. С. 42. https://doi.org/10.31857/S0207401X22010071
  8. Кочетов Н.А., Сычев А.Е. // Физика горения и взрыва. 2020. Т. 56. № 5. С. 32. https://doi.org/10.15372/FGV20200502
  9. Zoz H., Ren H. // InterCeram: Intern. Ceramic Rev. 2000. V. 49. №. 1. P. 24.
  10. Lin Сh-K., Hong Sh-Sh., Lee P-Y. // Intermetallics. 2000. V. 8. № 9–11. P. 1043. https://doi.org/10.1016/S0966-9795(00)00039-X
  11. Кочетов Н.А. // Хим. физика. 2022. Т. 41. № 7. С. 39. https://doi.org/10.31857/S0207401X2207007X
  12. Кочетов Н.А. // Физика горения и взрыва. 2022. Т. 58. № 6. C. 41. https://doi.org/10.15372/FGV20220604
  13. Graf T., Felser C., Parkin S.S.P. // Prog. Solid State Chem. 2011. V. 39. № 1. P. 1. https://doi.org/10.1016/j.progsolidstchem.2011.02.001
  14. Lin W., Freeman A.J. // Phys. Rev. B. 1992. V. 45. № 1. P. 61. https://doi.org/10.1103/PhysRevB.45.61
  15. Kimura Y., Miura S., Suzuki T. et al. //Materials Transactions. 1994. V. 35. № 11. Р. 800. https://doi.org/10.2320/matertrans1989.35.800
  16. Kimura Y., Elmer H. Lee, Liu C.T. // Ibid. 1995. V. 36. № 8. Р. 1031. https://doi.org/10.2320/matertrans1989.36.1031
  17. Tanaka Y., Ohmori T., Oikawa K. et al. // Mater. Trans. JIM. 2004. V. 45. № 2. Р. 427. https://doi.org/10.2320/matertrans.45.427
  18. Oikawa K., Ota T., Gejima F. et al. // Ibid. 2001. V. 42. № 11. Р. 2472. https://doi.org/10.2320/matertrans.42.2472
  19. Liu J.. Li J.G. // Mater. Sci. Eng. A. 2007. V. 454–455. P. 423. https://doi.org/10.1016/j.msea.2006.11.085
  20. Корчагин М.А. // Физика горения и взрыва. 2015. Т. 51. № 5. С. 77. https://doi.org/10.15372/FGV20150509
  21. Кочетов Н.А., Сеплярский Б.С. // Физика горения и взрыва. 2020. Т. 56. № 3. С. 69. https://doi.org/10.15372/FGV20200307
  22. Кочетов Н.А., Сеплярский Б.С. // Хим. физика. 2023. Т. 42. № 3. С. 23. https://doi.org/10.31857/S0207401X23030081
  23. Рогачев А.С., Мукасьян А.С. Горение для синтеза материалов. М: Физматлит, 2012.
  24. Kamynina O.K., Rogachev A.S., Sytschev A.E. et al. // Intern. J. Self-Propag. High-Temp. Synth. 2004. V. 13. № 3. P. 193.
  25. Камынина О.К., Рогачев А.С., Умаров Л.М. // Физика горения и взрыва. 2003. Т. 39. № 5. С. 69.
  26. Кочетов Н.А. // Физика горения и взрыва. 2021. Т. 57. № 6. С. 32. https://doi.org/10.15372/FGV20210604
  27. Vadchenko S.G. // Intern. J. Self-Propag. High-Temp. Synth. 2016. V. 25. № 4. P. 210. https://doi.org/10.3103/S1061386216040105
  28. Vadchenko. S.G. // Ibid. 2015. V. 24. № 2. P. 90. https://doi.org/10.3103/S1061386215020107
  29. Сеплярский Б.С. // Докл. РАН. 2004. T. 396. № 5. C. 640.
  30. Рогачев А.С. // Физика горения и взрыва. 2003. Т. 39. № 2. С. 38.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Результаты РФА активированных смесей Ni + Al + xCo при х = 10 (а)и 50 мас. % (б). Цифрами обозначены рефлексы пики следующих фаз: 1 – Ni, 2 – Al, 3 – Co.

Скачать (98KB)
3. Рис. 2. Зависимость среднего размера частиц активированной смеси Ni + Al + xCo от содержания кобальта.

Скачать (74KB)
4. Рис. 3. Фотографии образцов продуктов горения исходной смеси Ni + Al (а) и частично сгоревшего образца из смеси Ni + Al + 10%Co (б).

Скачать (107KB)
5. Рис. 4. Зависимость скорости горения образцов из исходной (○) и активированной (■) смеси Ni + Al + xCo от содержания кобальта.

Скачать (78KB)
6. Рис. 5. Зависимость относительного удлинения сгоревшего образца от содержания кобальта из исходной (○) и активированной (■) смеси Ni + Al + xCo.

Скачать (78KB)
7. Рис. 6. Зависимость максимальной температуры горения образцов из исходной (○) и активированной (■) смеси Ni + Al + xCo от содержания кобальта.

Скачать (83KB)
8. Рис. 7. Результаты РФА продуктов горения активированных смесей Ni + Al + xCo при х = 10 (а), 30 (б) и 50 мас. % (в). Цифрами обозначены пики следующих фаз: 1 – твердый раствор NiAl(Co), 2 – твердый раствор Ni3Al(Co).

Скачать (135KB)
9. Рис. 8. Фотографии образцов продуктов горения активированных смесей Ni + Al + xCo при х = 10 (а), 20 (б), 30 (в), 40 (г), 50 мас. % (д).

Скачать (190KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».