Solid Products of NO2 and O3 Uptake on Methane Flame Soot

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a flow reactor with a movable insert and mass-spectrometric control of the gas composition, methane soot samples are treated with O3 and NO2 reagents until the surface is completely poisoned. A solution of the initial methane soot in acetonitrile and solid products of its reaction with oxidizing reagents O3 and NO2 is analyzed using high-resolution mass spectrometry with an electrospray ion source and gas chromatography (GC)–mass spectrometry (MS) with electron ionization. It is established that the original soot contains a number of aromatic compounds, including polycyclic compounds, which are completely consumed in the reaction with these oxidizing agents. Compounds from the paraffin class remain inert with respect to NO2 and O3. The products of the ozonization of prenitrated soot are the same as those of simple ozonation. The number of ozonation products is much higher than similar nitration products. This is the reason for the reactivity of nitrated soot with respect to the ozone uptake.

About the authors

A. A. Eganov

Sechenov First Moscow State Medical University

Email: v.zelenov48@gmail.com
Moscow, Russia

D. A. Kardonsky

Sechenov First Moscow State Medical University

Email: v.zelenov48@gmail.com
Moscow, Russia

I. V. Sulimenkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: v.zelenov48@gmail.com
Moscow, Russia

V. I. Kozlovskiy

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: v.zelenov48@gmail.com
Moscow, Russia

E. V. Aparina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: v.zelenov48@gmail.com
Moscow, Russia

V. V. Zelenov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: v.zelenov48@gmail.com
Moscow, Russia

References

  1. Roberts-Semple D., Song F., Gao Yu. // Atmos. Pollut. Res. 2012. V. 3. P. 247; www.atmospolres.com
  2. Liu Yu., Tang G., Liu B. et al. // Atmos. Environ. 2022. V. 275. P. 119018; https://doi.org/10.1016/jatmosenv.2022.119018
  3. Schumann U., Huntrieser H. // Atmos. Chem. Phys. 2007. V. 7. P. 3823; www.atmos-chem-phys.net/7/3823/2007/
  4. Washenfelder R.A., Wagner N.L., Dubé W.P., Brown S.S. // Environ. Sci. Technol. 2011. V. 45. P. 2938; https://doi.org/10.1021/es103340u
  5. Ларин И.К. // Хим. физика. 2019. Т. 38. №5. С. 81; https://doi.org/10.1134/S0207401X1905008X
  6. Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86; https://doi.org/10.31857/S0207401X21050095
  7. Ларин И.К. // Хим. физика. 2022. Т. 41. № 5. С. 371; https://doi.org/10/31857/S0207401X22050089
  8. Xiong X., Liu X., Wu W. et al. // Atmos. Environ. 2022. V. 273. P. 118956; https://doi.org/10.1016/j.atmosenv.2022.118956
  9. Aas W., Tsyro S., Bieber E. et al. // Atmos. Chem. Phys. 2012. V. 12. P. 8073; https://doi.org/10.5194/acp-12-8073-2012
  10. Sharma S.K., Karapurkar S.G., Shenoy D.M., Mandal T.K. // J. Atmos. Chem. 2022. V. 79. P. 67; https://doi.org/10.1007/s10874-022-09429-0
  11. Berner A., Sidla S., Galambos Z. et al. // J. Geophys. Res. Atmospheres. 1996. V. 101. P. 19559; https://doi.org/10.1029/95JD03425
  12. Pohl K., Cantwell M., Herckes P., Lohmann R. // Atmos. Chem. Phys. 2014. V. 14. P. 7431; https://doi.org/10.5194/acp-14-7431-2014,2014
  13. Bond T.C., Streets D.G., Yarber K.F. et al. // J. Geophys. Res. 2004. V. 109. D14203; https://doi.org/10.1029/2003JD003697
  14. Wang R., Tao S., Shen H. et al. // Environ. Sci. Technol. 2014. V. 48. P. 6780; https://doi.org/10.1021/es5021422
  15. Klimont Z., Kupiainen K., Heyes C. et al. // Atmos. Chem. Phys. 2017. V. 17. P. 8681; https://doi.org/10.5194/acp-8681-2017
  16. Akhter M.S., Chughtai A.R., Smith D.M. // Applied Spec. 1985. V. 39. P. 143; https://doi.org/10.1366/0003702854249114
  17. Stadler D., Rossi M.J. // Phys. Chem. Chem. Phys. 2000. V. 2. P. 5420; https://doi.org/10.1039/b005680o
  18. Cain J.P., Gassman P.L., Wang H., Laskin A. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 5206; https://doi.org/10.1039/b924344e
  19. Smedley J.M., Williams A., Bartle K.D. // Combust.and Flame 1992. V. 91. P. 71; https://doi.org/10.1016/0010-2180(92)90128-C
  20. Siegmann K., Hepp H., Sattler K. // Combust. Sci. Technol. 1995. V. 109. P. 165; https://doi.org/10.1080/00102209508951900
  21. Onischuk A.A., di Stasio S., Karasev V.V. et al. // Aerosol Sci. 2003. V. 34. P. 383; https://doi.org/10.1016/S0021-8502(02)00215-X
  22. Dobbings R.A., Fletcher R.A., Chang H.-C. // Combust. and Flame. 1998. V. 115. P. 285; https://doi.org/10.1016/S0010-2180(98)00010-8
  23. Oktem B., Tolocka M.P., Zhao B. et al. // Combust. and Flame. 2005. V. 142. P. 364; https://doi.org/10.1016/j.combustflame.2005.03.016
  24. Hafner W.D., Carlson D.L., Hites R.A. // Environ. Sci. Technol. 2005. V. 39. P. 7374; https://doi.org/10.1021/es0508673
  25. Lang C., Tao S., Liu W. et al. // Environ. Sci. Technol. 2008. V. 42. P. 5156; https://doi.org/10.1021/es800453n
  26. Li W., Park R., Alexandrou N. et al. // Environ. Sci. Technol. 2021. V. 55. P. 2254; https://doi.org/10.1021/acs.est.0c07079
  27. Ringuet J., Albinet A., Leoz-Garziandia E. et al. // Atmos. Environ. 2012. V. 61. P. 15; https://doi.org/10.1016/j.atmosenv.2012.07.025
  28. Roy R., Jan R., Gunjal G. et al. // Atmos. Environ. 2019. V. 210. P. 47; https://doi.org/10.1016/j.atmosenv.2019.04.034
  29. Liu Y., Liu C., Ma J. et al. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 10896; https://doi.org/10.1039/c0cp00402b
  30. Burkholder J.B., Sander S.P., Abbatt J.P.D. et al. “Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation № 19”. Pasadena: NASA JPL Publication 19-5, 2019; http://jpldataeval.jpl.nasa.gov
  31. Akhter M.S., Chughtai A.R., Smith D.M. // J. Phys. Chem. 1984. V. 88. P. 5334; https://doi.org/10.1021/j.150666a046
  32. Smith D.M., Chughtai A.R. // J. Geophys. Res. 1996. V. 101D. P. 19607; https://doi.org/10.1029/95JD03032
  33. Kirchner U., Scheer V., Vogt R. // J. Phys. Chem. A. 2000. V. 104. P. 8908; https://doi.org/10.1021/jp0005322
  34. Han C., Liu Y., He H. // Atmos. Environ. 2013. V. 64. P. 270; https://doi.org/10.1016/j.atmosenv.2012.10.008
  35. Зеленов В.В., Апарина Е.В. // Хим. физика. 2023. Т. 42. № 1. С. 73; https://doi.org/10.31857/S0207401X23010144
  36. Kozlovski V., Brusov V., Sulimenkov I. et al. // Rapid Commun. Mass Spectrom. 2004. V. 18. P. 780; https://doi.org/10.1002/rcm.1405
  37. www.sisweb.com/software/ms/nist.htm

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (81KB)
3.

Download (83KB)

Copyright (c) 2023 А.А. Еганов, Д.А. Кардонский, И.В. Сулименков, В.И. Козловский, Е.В. Апарина, В.В. Зеленов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».