Anomalies of Thermal Fields Revealed by Satellite Data during Preparatio n and Occurrence of Strong Earthquakes in the Region of the Baikal Rift Zone in 2008–2022

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Long-term changes in thermal fields were studied before and during strong earthquakes with magnitudes from 5.1 to 5.6 that occurred in the region of the Baikal rift zone in 2008–2022. Satellite data were used for these studies. For the analysis we used the values of land surface temperature, temperature of the near-surface layer of the atmosphere, outgoing long-wave radiation, and relative humidity recorded using the AIRS instrument mounted on the Aqua satellite. During the periods of preparation and occurrence of these seismic events, anomalous variations in the parameters of thermal fields registered with satellite were revealed. They exceeded the average long-term values: for land surface temperature and temperature of the near-surface layer of the atmosphere by 5–10%, for outgoing long-wave radiation by 11–15%, and for relative humidity by 6–10%. A strong negative correlation was found between changes in the temperature of the near-surface layer of the atmosphere and relative humidity (correlation coefficient of –0.75), as well as antiphase oscillations between the values of the outgoing long-wave radiation and relative humidity. The obtained results can be used for studies of the precursor variability of thermal fields during monitoring of seismic hazard zones.

Авторлар туралы

V. Bondur

Institute for Scientific Research of Aerospace Monitoring “AEROCOSMOS”

Хат алмасуға жауапты Автор.
Email: office@aerocosmos.info
Russia, Moscow

O. Voronova

Institute for Scientific Research of Aerospace Monitoring “AEROCOSMOS”

Email: office@aerocosmos.info
Russia, Moscow

Әдебиет тізімі

  1. Акопян С.Ц., Бондур В.Г., Рогожин Е.А. Технология мониторинга и прогнозирования сильных землетрясений на территории России с использованием метода сейсмической энтропии // Физика Земли. 2017. № 1. С. 34–53. https://doi.org/10.7868/S0002333717010021
  2. Бондур В.Г., Воронова О.С. Регистрация из космоса аномальных вариаций тепловых полей при сейсмических событиях на территории Северного Кавказа с 2017 по 2022 гг. // Исслед. Земли из космоса. 2022. № 6. С. 13–26. https://doi.org/10.31857/S0205961422060021
  3. Бондур В.Г., Воронова О.С., Исследования тепловых полей перед сильными землетрясениями в Турции 8 марта 2010 г. (М = 6.1) и 24 января 2020 г. (М = 6.7) // Исслед. Земли из космоса. 2020. № 6. С. 3–16. https://doi.org/10.31857/S0205961420060032
  4. Бондур В.Г., Гарагаш И.А, Гохберг М.Б., Родкин М.В. Эволюция напряженного состояния Южной Калифорнии на основе геомеханической модели и текущей сейсмичности // Физика Земли. 2016а. № 1. С. 120–132. https://doi.org/10.7868/S000233371601004X
  5. Бондур В.Г., Гарагаш И.А., Гохберг М.Б. Крупномасштабное взаимодействие сейсмоактивных тектонических провинций. На примере Южной Калифорнии // Доклады академии наук. 2016б. Т. 466. № 5. С. 598–601. https://doi.org/10.7868/S0869565216050170
  6. Бондур В.Г., Гарагаш И.А., Гохберг М.Б., Лапшин В.М., Нечаев Ю.В. Связь между вариациями напряженно-деформированного состояния земной коры и сейсмической активностью на примере Южной Калифорнии // Докл. АН. 2010. Т. 430. № 3. С. 400–404.
  7. Бондур В.Г., Гарагаш И.А., Гохберг М.Б., Лапшин В.М., Нечаев Ю.В., Стеблов Г.М., Шалимов С.Л. Геомеханические модели и ионосферные вариации для крупнейших землетрясений при слабом воздействии градиентов атмосферного давления // Докл. АН. 2007. Т. 414. № 4. С. 540–543.
  8. Бондур В.Г., Цидилина М.Н., Гапонова Е.В., Воронова О.С. Совместный анализ аномальных вариаций различных геофизических полей по космическим данным при подготовке землетрясения в районе оз. Байкал 22 сентября 2020 г. (М = 5.6) // Исслед. Земли из космоса. 2022. № 5. С. 3–19. https://doi.org/10.31857/S0205961422050049
  9. Бондур В.Г., Цидилина М.Н., Гапонова Е.В., Воронова О.С., Гапонова М.В., Феоктистова Н.В., Зима А.Л. Регистрация из космоса аномалий различных геофизических полей при подготовке разрушительных землетрясений в Турции в феврале 2023 г. // Исслед. Земли из космоса. 2023. № 4. 3–25. https://doi.org/10.31857/S0205961423340018
  10. Бондур В.Г., Чимитдоржиев Т.Н., Тубанов Ц.А., Дмитриев А.В., Дагуров П.Н. Анализ динамики блоково-разломной структуры в районе землетрясений 2008 и 2020 г. на Южном Байкале методами спутниковой радиоинтерферометрии // Докл. Российской академии наук. Науки о Земле. 2021. Т. 499. № 2. С. 144–150. https://doi.org/10.31857/S268673972108003X
  11. Гапонова Е.В., Зверев А.Т., Цидилина М.Н. Выявление аномалий линеаментных систем по космическим изображениям во время сильных землетрясений в Калифорнии с магнитудами 6.4 и 7.1 // Исслед. Земли из космоса. 2019. № 6. С. 36–47.
  12. Гилёва Н.А., Мельникова В.И., Радзиминович Я.Б., Середкина А.И. Максимихинское землетрясение 20 мая 2008 г. с КP = 14.3, Mw = 5.3, I0 = 7 (Центральный Байкал) // Землетрясения Северной Евразии, 2008 г. Обнинск: ГС РАН, 2014. С. 337–345.
  13. Гилёва Н.А., Мельникова В.И., Середкина А.И., Радзиминович Я.Б. Муяканское-II землетрясение 23 мая 2014 г. с КР = 14.3, Mw = 5.5, I0 = 7–8 (Cеверное Прибайкалье) // Землетрясения Северной Евразии. Вып. 23 (2014 г.). Обнинск: ФИЦ ЕГС РАН, 2020. С. 323–333. https://doi.org/10.35540/1818-6254.2020.23.33
  14. Гладков А.А., Лунина О.В. Разработка интерактивной информационной системы для построения моделей композитных сейсмогенных источников юга Восточной Сибири // Вестник Иркутского государственного технического университета. 2014. № 9. 17–24.
  15. Гладков А.А., Лунина О.В., Андреев А.В. Некоторые аспекты разработки информационной системы для интегрирования данных по активной тектонике // Геоинформатика. 2013. № 4. С. 6–14.
  16. Жуков Б.С., Халле В., Шлотцхауэр Г., Эртель Д. Пространственно-временной анализ тепловых аномалий как предвестников землетрясений // Соврем. пробл. дистанц. зондир. Земли из космоса. 2010. Т. 7. № 2. С. 333–343.
  17. Имашев С.А., Свердлик Л.Г. Вариации температуры атмосферы в период высокой сейсмической активности в Японии в 2011 г. Наука, новые технологии и инновации, 2015, 1, 15–19.
  18. Кашкин В.Б., Романов А.А., Григорьев А.С., Баскова А.А. Тропосферные эффекты землетрясений в Туве, наблюдаемые с искусственных спутников Земли. Журн. СФУ. Техника и технологии, 2012, 5(2), 220–228.
  19. Логачев Н.А. История и геодинамика Байкальского рифта // Геология и геофизика. 2003. Т. 44. № 5. С. 391–406.
  20. Мац В.Д., Гранина Л.З., Ефимова И.М. Байкальский рифт: на пути к океану / В.Д. Мац, Л.З. Гранина, И.М. Ефимова // Природа: ежемесячный естественнонаучный журн. 2014. № 2. С. 28–38.
  21. Мельникова В.И., Гилева Н.А., Имаев В.С., Радзиминович Я.Б., Тубанов Ц.А. Особенности сейсмических активизаций среднего Байкала в 2008–2011 гг. // Докл. АН. 2013. Т. 453. № 6. С. 680–685. https://doi.org/10.7868/S086956521336019X
  22. Мельникова В.И., Гилева Н.А., Радзиминович Я.Б., Середкина А.И. Култукское землетрясение 27 августа 2008 г. с Mw = 6.3, I0 = 8–9 (Южный Байкал) // Землетрясения Северной Евразии в 2008 г. Обнинск: ГС РАН, 2014. С. 386–407.
  23. Пулинец С.А., Бондур В.Г., Цидилина М.Н., Гапонова М.В. Проверка концепции сейсмо-ионосферных связей в спокойных гелиогеомагнитных условиях на примере Венчуаньского землетрясения в Китае 12 мая 2008 г. // Геомагнетизм и аэрономия. 2010. Т. 50. № 2. С. 240–252.
  24. Середкина А.И. Современное состояние исследований глубинного строения земной коры и мантии Байкальского рифта по сейсмологическим данным // Физика Земли. 2021. № 2. С. 46–70. https://doi.org/10.31857/S0002333721020113
  25. Смирнов В.М., Смирнова Е.В., Цидилина М.Н., Гапонова М.В. Сейсмоионосферные вариации во время сильных землетрясений на примере землетрясения 2010 г. в Чили // Космические исследования. 2018. Т. 56. № 4. С. 21–30. https://doi.org/10.31857/S002342060000347-9
  26. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.
  27. Тубанов Ц.А., Предеин П.А., Цыдыпова Л.Р., Санжиева Д.П.-Д., Радзиминович Н.А., Базаров А.Д. Результаты и перспективы сейсмологических наблюдений в центральной части Байкальского рифта // Российский сейсмологический журн. 2021. Т. 3. № 4. С. 38–57. https://doi.org/10.35540/2686-7907.2021.4.03
  28. Akhoondzadeh M., Marchetti D. Study of the Preparation Phase of Turkey’s Powerful Earthquake (6 February 2023) by a Geophysical MultiParametric Fuzzy Inference System. Remote Sens. 2023. V. 15. P. 2224. https://doi.org/10.3390/rs15092224
  29. Barbot S., Luo H., Wang T., Hamiel Y., Piatibratova O., Javed M.T., Braitenberg C., Gurbuz G. (2023). Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.502
  30. Buslov M.M. (2012) Geodynamic nature of the Baikal Rift Zone and its sedimentary filling in the Cretaceous–Cenozoic: the effect of the far-range impact of the Mongolo-Okhotsk and Indo-Eurasian collisions. Russ Geol Geophys 53:955–962. https://doi.org/10.1016/j.rgg.2012.07.010
  31. Chen Y.-I., Huang C.-S., Liu J.-Y. Statistical Evidences of Seismo-Ionospheric Precursors Applying Receiver Operating Characteristic (ROC) Curve on the GPS Total Electron Content in China. J. Asian Earth Sci. 2015, 114, 393–402. https://doi.org/10.1016/j.jseaes.2015.05.028
  32. De Santis A., Marchetti D., Pavón-Carrasco F.J., Cianchini G., Perrone L., Abbattista C., Alfonsi L., Amoruso L., Campuzano S.A., Carbone M. et al. PrecursoryWorldwide Signatures of Earthquake Occurrences on Swarm Satellite Data. Sci. Rep. 2019, 9, 20287. https://doi.org/10.3390/atmos10070371
  33. Elshin O., Tronin A. (2020) Global Earthquake Prediction Systems. Open J. Earthquake Research, 9, 170–180. https://doi.org/10.4236/ojer.2020.92010
  34. Genzano N., Filizzola C., Hattori K., Pergola N., Tramutoli V. Statistical Correlation Analysis between Thermal Infrared Anomalies Observed From MTSATs and Large Earthquakes Occurred in Japan (2005–2015). J. Geophys. Res. Solid Earth 2021, 126, e2020JB020108. https://doi.org/10.1029/2020JB020108|
  35. Keilis-Borok V.I., Knopoff L., Kossobokov V.G., Rotvain I.M. Intermediate term prediction in advance of the Loma Prieta earthquake // Geophys. Res. Letters. 1990. V. 17. № 9. P. 1461–1464.
  36. Marchetti D., De Santis A., Campuzano S.A., Zhu K., Soldani M., D’Arcangelo S., Orlando M., Wang T., Cianchini G., Di Mauro D. et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sens. 2022, 14, 2649. https://doi.org/10.3390/rs14112649
  37. Ouzounov D., Liu D., Chunli K., Cervone G., Kafatos M., Taylor P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics. 2007. 431, 211–220.
  38. Pavlidou E., van der Meijde M., van der Werff H., Hecker, C. (2018). Time Series Analysis of Land Surface Temperatures in 20 Earthquake Cases Worldwide. Remote Sensing, 11(1), 61. https://doi.org/10.3390/rs11010061
  39. Petit C., Déverchère J. (2006) Structure and evolution of the Baikal rift: a synthesis. Geochem Geophys Geosyst 7: Q11016. https://doi.org/10.1029/2006GC001265
  40. Prasad B.S.N., Nagaraja K., Chandrashekara M.S., Paramesh L., Madhava M.S. (2005). Diurnal and seasonal variations of radioactivity and electrical conductivity near the surface for a continental location Mysore, India. Atmospheric Research, 76(1–4). 65–77.
  41. Pulinets S.A., Ouzounov D., Karelin A.V., Boyarchuk K.A., Pokhmelnykh L.A. The physical nature of thermal anomalies observed before strong earthquakes. Physics and Chemistry of the Earth, Parts A/B/C, 31(4–9), 2006. 143–153. https://doi.org/10.1016/j.pce.2006.02.042
  42. Pulinets S.A., Ouzounov D.P., Karelin A.V., Davidenko D.V., Physical Bases of the Generation of Short-Term Earthquake Precursors: A Complex Model of Ionization-Induced Geophysical Processes in the Lithosphere–Atmosphere–Ionosphere–Magnetosphere System, Geomagnetism and Aeronomy, 55. № 4, 540–558, 2015.
  43. Radziminovich Y.B., Gileva N.A., Tubanov T.A., Lukhneva O.F., Novopashina A.V., Tcydypova L.R., The December 9, 2020, Mw 5.5 Kudara earthquake (Middle Baikal, Russia): Internet questionnaire hard test and macroseismic data analysis, Bull. Earthquake Eng., 2022. V. 20. № 3. P. 1297–1324. https://doi.org/10.1007/s10518-021-01305-8
  44. Ruzmaikin A., Aumann H. H., AND Manning E. M. Relative Humidity in the Troposphere with AIRS // J. atmospheric sciences. 2014. 2516–2533. https://doi.org/10.1175/JAS-D-13-0363.1
  45. San’kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V. (2011) Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile area. Geotectonics 45: 378–393. https://doi.org/10.1134/S0016852111050049
  46. Saradjian M.R., Akhoondzadeh M. Prediction of the date, magnitude and affected area of impending strong earthquakes using integration of multi precursors earthquake parameters. Natural Hazards and Earth System Sciences, 2011. 11(4), 1109–1119. https://doi.org/10.5194/nhess-11-1109-2011
  47. Susskind J., Barnet C.D., Blaisdell J.M. (2003). Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 390–409. https://doi.org/10.1109/tgrs.2002.808236

Қосымша файлдар


© В.Г. Бондур, О.С. Воронова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».