Gabbro of the Esmeralda underwater volcano(Mariana Island Arc)
- Authors: Fedorov P.I.1, Rashidov V.A.2, Ananyev V.V.2
-
Affiliations:
- Geological Institute, Russian Academy of Sciences
- Institute of Volcanology and Seismology FEB RAS
- Issue: No 4 (2025)
- Pages: 84-100
- Section: Articles
- URL: https://bakhtiniada.ru/0203-0306/article/view/308536
- DOI: https://doi.org/10.31857/S0203030625040051
- EDN: https://elibrary.ru/qficmo
- ID: 308536
Cite item
Abstract
About the authors
P. I. Fedorov
Geological Institute, Russian Academy of Sciences
Email: pi_fedorov@mail.ru
Pyzhevsky lane, 7, bld. 1, Moscow, 119017 Russia
V. A. Rashidov
Institute of Volcanology and Seismology FEB RAS
Email: rashidva@kscnet.ru
bulvar Piipa, 9, Petropavlovsk-Kamchatsky, 683006 Russia
V. V. Ananyev
Institute of Volcanology and Seismology FEB RAS
Email: aversun@yandex.ru
bulvar Piipa, 9, Petropavlovsk-Kamchatsky, 683006 Russia
References
- Ананьев В.В., Петрова В.В., Рашидов В.А. Подводный вулкан Эсмеральда (Марианская островная дуга) и некоторые особенности слагающих его горных пород // Вулканология и сейсмология. 2024. № 1. С. 56–75. https://doi.org/10.31857/S0203030624010058
- Горшков А.П., Абрамов В.А., Сапожников Е.А. и др. Геологическое строение подводного вулкана Эсмеральда // Вулканология и сейсмология. 1980. № 4. С. 65–78.
- Колосков А.В., Рашидов В.А., Ананьев В.В. Первая находка шпинель-лерцолитового ксенолита “неофиолитового типа” в задуговом бассейне Марианской островодужной системы // Океанология. 2020. № 4. С. 629–647. https://doi.org/10.31857/S0030157420040139
- Рашидов В.А., Петрова В.В., Ананьев В.В., Горькова Н.В. Первые сведения о редкоземельной минерализации в породах вулкана Эсмеральда (Марианская островная дуга) // Вестник КРАУНЦ. Науки о Земле. 2024а. № 1. Вып. № 61. С. 28–41. https://doi.org/10.31431/1816-5524-2024-1-61-28-41
- Рашидов В.А., Петрова В.В., Ананьев В.В., Горькова Н.В. Необычная минерализация в андезибазальте подводного вулкана Эсмеральда (Марианская островная дуга) // Литология и полез. ископаемые. 2024б. № 4. С. 462–468. https://doi.org/10.31857/S0024497X24040051
- Akizawa N., Ohara Y., Okino K. et al. Geochemical characteristics of backarc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion // Progress in Earth and Planetary Science. 2021. V. 8. № 65. 34 p. https://doi.org/10.1186/s40645-021-00454-3
- Baker D.R., Eggler D.H. Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from I atm to 8 kbar: Application to the Aleutian volcanic center of Atka // American Mineralogist. 1987. V. 72. № 1–2. P. 12–28.
- Bogaard P.J.F., Wörner G. Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany // Journal of Petrology. 2003. V. 44. Iss. 3. P. 569–602. https://doi.org/10.1093/petrology/44.3.569
- Condie К. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? // Lithos. 2005. V. 79. Iss. 3–4. P. 491–504.
- Dixon T.H., Stern R.J. Petrology, chemistry, and isotopic composition of submarine volcanoes in the southern Mariana Arc // Geological Society of America Bull. 1983. V. 94. № 10. P. 1159–1172.
- Duggen S., Portnyagin M., Baker J. et al. Drastic shift in lava geochemistry in the volcanic-front to reararc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting // Geochim. Cosmochim. Acta. 2007. V. 71. Iss. 2. P. 452–480.
- Dietrich V., Emmermann R., Oberhansli R., Puchelt H. Geochemistry of basaltic and gabbroic rocks from the West Mariana basin and Mariana trench // Earth and Planet. Sci. Lett. 1978. V. 39. Iss. 1. P. 127–144.
- Di Vincenzo G., Rocchi S. Origin and interaction of mafic and felsic magmas in an evolving late orogenic setting: the Early Paleozoic Terra Nova Intrusive Complex, Antarctica // Contributions to Mineralogy and Petrology. 1999. V. 137. P. 15–35.
- Elliott T. Tracers of the Slab // Inside the Subduction Factory. Geophysical Monograph Series. 2003. № 138. P. 23–45.
- Fedyunina N.N., Seregina I.F., Bolshov M.A. et al. Investigation of the efficiency of the sample pretreatment stage for the determination of the Rare Earth Elements in rock samples by inductively coupled plasma mass spectrometry technique // Analytica Chimica Acta. 2012. V. 713. P. 97–102.
- Hess H.H. Major structural features of the western North Pacific an interpretation of H.O. 5484, batimetric chart, Korea to New Guinea // Geological Society of America Bull. 1948. V. 59. № 5. P. 417–446.
- Irvine T.N., Baragar W.R.A. A guide to the chemical classification on the common volcanic rocks // Canadian Journal of Earth Sciences. 1971. V. 8. № 5. P. 523–548.
- Ishizuka O., Taylor R.N., Milton J.A. et al. Variation in the mantle sources of the northern Izu arc with time and space – Constraints from high-precision Pb isotopes // Journal of Volcanology and Geothermal Research. 2006. V. 156. Iss. 3–4. P. 266–290.
- Johnson M.C., Plank T. Dehydration and melting experiments constrain the fate of subducted sediments // Geochemistry. Geophysics. Geosystems. 2000. V. 1. Iss. 12. https://doi.org/10.1029/999GC000014
- Liu B., Ma C.Q., Zhang J.Ya. et al. 40Ar–39Ar age and geochemistry of subduction-related mafic dikes in northern Tibet, China: petrogenesis and tectonic implications // International Geology Rev. 2014. V. 56. Iss. 1. P. 57–73. https://doi.org/10.1080/00206814.2013.818804
- McKenzie D., O’Nions R.K. Partial melt distributions from inversion of rare earth element concentrations // Journal of Petrology. 1991. V. 32. Iss. 5. P. 1021–1091.
- Miyashiro A. Volcanic rocks series in island arcs and active continental margins // American Journal of Sciences. 1974. V. 274. P. 321–355.
- Ohara Y., Stern R.J., Ishii T. et al. Peridotites from the Mariana Trough: first look at the mantle beneath an active backarc basin // Contributions to Mineralogy and Petrology. 2002. V. 143. P. 1–18.
- Ohara Y., Fujioka K., Ishii T. et al. Peridotites and gabbros from the Parece Vela backarc basin: Unique tectonic window in an extinct backarc spreading ridge // Geochemistry. Geophysics. Geosystems. 2003. V. 4. Iss. 7. https://doi.org/10.1029/2002GC000469
- Pearce J.A., Kempton P.D., Nowell G.M., Noble S.R. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arcbasin systems // Journal of Petrology. 1999. V. 40. Iss. 11. P. 1579–1611. https://doi.org/10.1093/petroj/40.11.1579
- Pearce J.A., Stern R.J., Bloomer S.H. et al. Geochemical mapping of the Mariana arcbasin system: Implications for the nature and distribution of subduction components // Geochemistry. Geophysics. Geosystems. 2005. V. 6. № 7. https://doi.org/10.1029/2004GC000895
- Pertermann M., Hirschmann M.M., Hametner K. et al. Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite // Geochemistry. Geophysics. Geosystem (G3). 2004. V. 22. https://doi.org/10.1029/2003GC000638
- Plank T., Langmuir C.H. Tracing trace element from sediment input to volcanic output at subduction zones // Nature. 1993. V. 362. P. 739–742.
- Reagan M.K., McClelland W., Girard G. et al. The geology of the southern Mariana forearc crust: Implications for the scale of Eocene volcanism in the western Pacific // Earth and Planet. Sci. Lett. 2013. V. 380. P. 41–51.
- Regelous M., Hofmann A.W., Abouchami W. et al. Geochemistry of lavas from the Emperor seamounts, and the chemical evolution of Hawaiian magmatism from 85 to 42 Ma // Journal of Petrology. 2003. V. 44. № 1. P. 113–140.
- Ribeiro J.M., Stern R.J., Martinez F. et al. Geodynamic evolution of a forearc rift in the southernmost Mariana Arc // Island Arc. 2013. V. 22. Iss. 4. P. 453–476.
- Stern R.J., Bibee L.D. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc and its implication for magmagenesis in Island Arcs // Carnegie Institution of Washington Year Book. 1980. V. 79. P. 465–472.
- Stern R.J., Bibee L.D. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc // Contributions to Mineralogy and Petrology. 1984. V. 86. P. 159–169.
- Stern R.J., Bloomer S.H., Ping-Nan Lin, Smoot N. Chr. Submarine arc volcanism in the southern Mariana Arc as an ophiolites analoque // Tectophysics. 1989. V. 168. № 1–3. P. 151–170.
- Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts // Magmatism in ocean basin / Eds A.D. Saunders, M.J. Norry. London: Geological Society (Special Publications), 1989. V. 42. P. 313–345.
- Tamura Y., Ishizuka O., Stern R.J. et al. Mission Immiscible: Distinct Subduction Components Generate Two Primary Magmas at Pagan Volcano, Mariana Arc // Journal of Petrology. 2013. V. 55. Iss. 1. P. 63–101.
- Turner S.J., Langmuir C.H. An alternative to the igneous crust fluid + sediment melt paradigm for arc lava geochemistry // Science Advances. 2024. V. 10. P. 1–9. https://doi.org/10.1126/sciadv.adg6482
- Wang K., Plank T., Walker J.D. et al. A mantle melting profile across the Basin and Range, SW USA // Journal of Geophysical Research. 2002. V. 106. P. ECV 5-1 – ECV 5-21. https://doi.org/10.1029/2001JB000209
- Wang X., Wang Z., Liu Yo. et al. Calcium Stable Isotopes of Tonga and Mariana Arc Lavas: Implications for Slab Fluid-Mediated Carbonate Transfer in Cold Subduction Zones // Journal of Geophys. Res. Solid Earth. 2021. V. 126. e2020JB020207. 19 p. https://doi.org/10.1029/2020JB020207
- Zamboni D., Gazel E., Ryan J.G. et al. Contrasting Sediment Melt and Fluid Signatures for Magma Components in the Aeolian Arc: Implications for Numerical Modeling of Subduction Systems // Geochemistry. Geophysics. Geosystems. 2016. V. 17. https://doi.org/10.1002/2016GC006301
Supplementary files
