Sources of the melts of quaternary hauyne alkaline basaltoids in the Lesser Caucasus. Communication 2. The nature of the enriched lithospheric source
- Авторлар: Bubnov S.N.1, Goltsman Y.V.1, Kondrashov I.A.1, Oleinikova T.I.1, Dokuchaev A.Y.1
-
Мекемелер:
- Institute of Geology of ore Deposits, Petrography, Geochemistry, and Mineralogy RAS
- Шығарылым: № 6 (2024)
- Беттер: 80-94
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0203-0306/article/view/296560
- DOI: https://doi.org/10.31857/S0203030624060075
- EDN: https://elibrary.ru/HYVICG
- ID: 296560
Дәйексөз келтіру
Аннотация
Geochemical and isotopic–geochemical (Sr–Nd–Pb) data on the quaternary intraplate hauyne basanites and ordanshites in the Lesser Caucasus provide an insight into the most probable nature (characteristics of the composition and the depth of occurrence) of the EM II type enriched mantle source, from which, along with the Caucasus OIB-type plume–asthenospheric source, the parental melts of the rocks were derived. The source of the type was demonstrated to have been modified by a subduction-related component. Data are presented on the likely timing and mechanisms of contamination of the magma-generation regions with slab material. Our data suggest that the residue in the mantle source contained garnet, amphibole, and rutile. Our results led us to conclude that the source enriched in incompatible elements was most probably subduction-modified (in the course of Mesozoic and, perhaps, also Paleogene subduction events) subcontinental lithospheric mantle of the EM II type, which likely corresponded to rutile-bearing amphibole–garnet peridotite.
Негізгі сөздер
Толық мәтін

Авторлар туралы
S. Bubnov
Institute of Geology of ore Deposits, Petrography, Geochemistry, and Mineralogy RAS
Хат алмасуға жауапты Автор.
Email: bubnov@igem.ru
Ресей, Staromonetny lane, 35, Moscow, 119017
Yu. Goltsman
Institute of Geology of ore Deposits, Petrography, Geochemistry, and Mineralogy RAS
Email: bubnov@igem.ru
Ресей, Staromonetny lane, 35, Moscow, 119017
I. Kondrashov
Institute of Geology of ore Deposits, Petrography, Geochemistry, and Mineralogy RAS
Email: bubnov@igem.ru
Ресей, Staromonetny lane, 35, Moscow, 119017
T. Oleinikova
Institute of Geology of ore Deposits, Petrography, Geochemistry, and Mineralogy RAS
Email: bubnov@igem.ru
Ресей, Staromonetny lane, 35, Moscow, 119017
A. Dokuchaev
Institute of Geology of ore Deposits, Petrography, Geochemistry, and Mineralogy RAS
Email: bubnov@igem.ru
Ресей, Staromonetny lane, 35, Moscow, 119017
Әдебиет тізімі
- Бубнов С.Н., Гольцман Ю.В., Кондрашов И.А., Олейникова Т.И., Докучаев А.Я. Источники расплавов четвертичных гаюиновых щелочных базальтоидов Малого Кавказа. Сообщение 1. Результаты геохимических и изотопных (Sr–Nd–Pb) исследований // Вулканология и сейсмология. 2024. № 6. С. 55–79.
- Keskin M., Чугаев А.В., Лебедев В.А. и др. Геохронология и природа мантийных источников позднекайнозойского внутриплитного магматизма фронтальной части Аравийской плиты (неокайнозойская область Караджадаг, Турция). Сообщение 2. Результаты геохимических и изотопных (Sr–Nd–Pb) исследований // Вулканология и сейсмология. 2012. № 6. С. 41–70.
- Лебедев В.А., Чернышев И.В., Сагателян А.К. и др. Миоплиоценовый вулканизм Центральной Армении: геохронология и роль AFC-процессов в петрогенезисе магм // Вулканология и сейсмология. 2018. № 5. С. 18–42.
- Лебедев В.А., Чернышев И.В., Чугаев А.В. и др. Геохронология извержений и источники вещества материнских магм вулкана Эльбрус (Большой Кавказ): результаты K–Ar и Sr–Nd–Pb изотопных исследований // Геохимия. 2010. № 1. С. 45–73.
- Меликсетян Х., Никогосян И., Джрбашян Р. и др. Четвертичный моногенный вулканизм Капанского блока: вулканология, геохронология и геохимия (ЮВ часть Республики Армения) // Известия НАН РА. Науки о Земле. 2019. Т. 72. № 2. С. 19–42.
- Плечов П.Ю., Щербаков В.Д., Некрылов Н.А. Экстремально магнезиальный оливин в магматических породах // Геология и геофизика. 2018. Т. 59. № 12. С. 2129–2147.
- Сущевская Н.М., Соболев А.В., Лейченков Г.Л. и др. Роль пироксенитовой мантии в формировании расплавов мезозойского плюма Кара (по результатам изучения магматических пород западной части Земли Королевы Мод, Восточная Антарктида) // Геотектоника. 2021. Т. 66. № 4. С. 308–328.
- Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
- Allen M.B., Kheirkhah M., Neill I. et al. Generation of Arc and Within-plate Chemical Signatures in Collision Zone Magmatism: Quaternary Lavas from Kurdistan Province, Iran // J. Petrol. 2013. V. 54. № 5. P. 887–911.
- Arai S. Characterisation of spinel peridotites by olivine–spinel compositional relationships: review and interpretation // Chem. Geol. 1994. V. 113. P. 191–204.
- Arai S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry // Mineral. Magazine. 1992. V. 56. P. 173–184.
- Bagcı U., Alpaslan M., Frei R. et al. Different degrees of partial melting of the enriched mantle source for Plio-Quaternary basic volcanism, Toprakkale (Osmaniye) region, southern Turkey // Turkish Journal of Earth Sciences. 2011. V. 20. P. 115–135.
- Borisov A., Aranovich L. Rutile solubility and TiO2 activity in silicate melts: An experimental study // Chemical Geology. 2020. V. 556. P. 1–13.
- Class C., Miller D.M., Goldstein S.L., Langmuir C.H. Distinguishing melt and fluid subduction components in Umnak volcanics: Aleutian arc // Geochem. Geophys. Geosys. 2000. V. 1. P. 1–34.
- Condie К. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? // Lithos. 2005. V. 79. P. 491–504.
- Elburg M. A., Bergen M. V., Hoogewerff J. et al. Geochemical trends across an arc–continent collision zone: magma sources and slab–wedge transfer processes below the Pantar Strait volcanoes, Indonesia // Geochim. Cosmochim. Acta. 2002. V. 66. P. 2771–2789.
- Elliot T., Plank T., Zindler A. et al. Element transport from slab to volcanic front at the Mariana arc // J. of Geophys. Res. 1997. V. 102. Р. 14991–15019.
- Ernst R.E., Pease V., Puchkov V.N. et al. Geochemical characterization of Precambrian magmatic suites of the southeastern margin of the East European craton, Southern Urals, Russia // Геологический сборник № 5 Института геологии УНЦ РАН. Уфа: ДизайнПолиграфСервис, 2006. С. 119–161.
- Fitton J.G., Godard M. Origin and evolution of magmas on the Ontong Java Plateau // Origin and Evolution of the Ontong Java Plateau. 2004. V. 229. Geological Society of London Special Publication. P. 151–178.
- Flower M.F.J., Zhang M., Chen C.-Y. et al. Magmatism in the South China Basin 2. Post-spreading Quaternary basalts from Hainan Island, South China // Chemic. Geology. 1992. V. 97. P. 65–87.
- Foley S.F., Barth M.G., Jenner G.A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas // Geochim. Cosmochim. Acta. 2000. V. 64. P. 933–938.
- Furman T., Graham D. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province // Lithos. 1999. V. 48. P. 237–262.
- Gómez-Tuena A., Langmuir C.H., Goldstein S.L. et al. Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt // J. Petrol. 2007. V. 48. C. 537–562.
- Green D.H., Wallace M.E. Mantle metasomatism by ephemeral carbonatite melts // Nature. 1988. V. 336. P. 459–462.
- Green T.H., Pearson N. Ti-rich accessory phase saturation in hydrous mafic–felsic compositions at high P, T // Chemical Geology. 1986. V. 54. P. 185–201.
- Herzberg C., Asimow P.D. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation // Geochem. Geophys. Geosys. 2008. V. 9. № 9. P. 1–25.
- Hoang N., Flower M.F. Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a “diffuse igneous province” // J. Petrol. 1998. V. 39. № 3. P. 369–395.
- Ionov D., Gregoire M., Prikhodko V. Feldspar-Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle // Earth and Planet. Sci. Lett. 1999. V. 165. P. 37–44.
- Ivanov A.V. Deep-level geodynamics: boundaries of the process according to geochemic and petrologic data // Geodynamics & Tectonophysics. 2010. V. 1. № 1. P. 87–102.
- Kalfoun F. Ionov D., Merlet C. HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites // Earth and Planet. Sci. Lett. 2002. V. 199. P. 49–65.
- Krienitz M.S., Haase K.M., Mezger K. et al. Magma genesis and crustal contamination of continental intraplate lavas in northwestern Syria // Contributions to Mineralogy and Petrology. 2006. V. 151. P. 698–716.
- Krienitz M.S., Haase K.M., Mezger K. et al. Magma genesis and mantle dynamics at the Harrat Ash Shamah Volcanic Field (Southern Syria) // J. Petrol. 2007. V. 48. P. 1513–1542.
- Lambart S., Laporte D., Schiano P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints // Lithos. 2013. V. 160‒161. P. 14–36.
- LaTourette T., Hervig R.L., Holloway J.R. Trace element partitioning between amphibole, phlogopite, and basanite melt // Earth and Planet. Sci. Lett. 1995. V. 135. P. 13–30.
- Lustrino M., Wilson M. The circum-Mediterranean anorogenic Cenozoic igneous province // Earth-Science Reviews. 2007. V. 81. P. 1–65.
- Lustrino M., Keskin M., Mattioli M. et al. Heterogeneous mantle sources feeding the volcanic activity of Mt. Karacadag (SE Turkey) // Journal of Asian Earth Sciences. 2012. V. 46. P. 120–139.
- Neill I., Meliksetian Kh., Allen M.B. et al. Pliocene-Quaternary volcanic rocks of NW Armenia: magmatism and lithospheric dynamics within an active orogenic plateau // Lithos. 2013. V. 180–181. P. 200–215.
- Oyan V., Keskin M., Lebedev V.A. et al. Petrology and geochemistry of the Quaternary mafic volcanism to the NE of Lake Van, eastern Anatolian collision zone, Turkey // J. Petrol. 2017. V. 58. № 9. P. 1701–1728.
- Parlak O., Delaloye M., Kozlu H. et al. Trace element and Sr–Nd isotope geochemistry of the alkali basalts observed along the Yumurtalık Fault (Adana) in southern Turkey // Yerbilimleri. 2000. V. 22. P. 137–148.
- Pearce J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins // Continental Basalts and Mantle Xenoliths. U.K.: Shiva Press, 1983. P. 230–249.
- Pin Yan, Deng H. Liu H. et al. The temporal and spatial distribution of volcanism in the South China Sea region // J. Asian Earth Sci. 2006. V. 27. P. 647‒659.
- Plank T. The chemical composition of subducting sediments // Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014. V. 4. P. 607–629.
- Rollinson H.R. Using geochemical data. Evaluation, presentation, interpretation. London: Longman, 1993. 379 p.
- Ryerson F., Watson E. Rutile saturation in magmas; implications for Ti–Nb–Ta depletion in island-arc basalts // Earth and Planet. Sci. Lett. 1987. V. 8. P. 225–239.
- Saal A.E., Hauri E.H., Langmuir S.H., Perfit M.R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle // Nature. 2002. V. 419. P. 451–455.
- Shaw J.E., Baker J.A., Menzies M.A. et al. Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): a mixed lithosphere-asthenosphere source activated by lithospheric extension // J. Petrol. 2003. V. 44. P. 1657–1679.
- Sheppard S., Taylor W.R. Barium- and LREE-rich, olivine–mica-lamprophyres with affinities to lamproites, Mt. Bundey, Northern Territory, Australia // Lithos. 1992. V. 28. P. 303–325.
- Sobolev A.V., Hofmann A.W., Kuzmin D.V. et al. The amount of recycled crust in sources of mantle-derived melts // Science. 2007. V. 316(5823). P. 412–417.
- Sobolev A.V., Sobolev D.V., Kuzmin D.V. et al. Siberian meimechites: origin and relation to flood basalts and kimberlites // Russian Geology and Geophysics. 2009. V. 50. P. 999–1033.
- Sugden P. J., Savov I. P., Wilson M. et al. The Thickness of the Mantle Lithosphere and Collision-Related Volcanism in the Lesser Caucasus // J. Petrol. 2019. V. 60. № 2. P. 199–230.
- Sun Shen-su, McDonough W.F. Chemical and Isotopic Systematics of oceanic basalts: implications for Mantle Composition and Processes // Magmatism in the Ocean Basins Spec. Publ. Vol. Geol. Soc. London. 1989. № 42. P. 313–345.
- Tu K., Flower M.F.J., Carison R.W., Xie G. H. et al. Magmatism in the South China Basin: I, Isotopic and trace element evidence for an endogenous Dupal mantle component // Chem. Geol. 1992. V. 97. P. 47–63.
- Turner S.P. On the time-scales of magmatism at island-arc volcanoes // Philosophical Transactions of the Royal Society of London. 2002. Series A 360. P. 2853–2871.
- White W.M., Duncan R.A. Geochemistry and geochronology of the Society Island: new evidences for deep mantle recycling / Eds A. Basu, S.R. Hart // Earth Processes: Reading the Isotopic Code. AGU Geophysical Monograph Series. 1996. V. 95. P. 183–206.
- Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // Amer. Mineral. 2010. V. 95. P. 185–187.
- Workman R.K., Hart S.R. Major and trace element composition of the depleted MORB mantle (DMM) // Earth Planet. Sci. Lett. 2005. V. 231. P. 53–72.
- Xiong X.L., Adam J.D., Green T.H. Rutile stability and rutile/melt partitioning during partial melting of hydrous basalt: implication for TTG genesis // Chem. Geol. 2005. V. 218. P. 339–359.
- Yan Q., Shi X., Castillo P.R. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective // Journal of Asian Earth Sciences. 2014. V. 85(2). P. 178–201.
- Yang Z.F., Li J., Jiang Q.B. et al. Using Major Element Logratios to Recognize Compositional Patterns of Basalt: Implications for Source Lithological and Compositional Heterogeneities // Journal of Geophysical Research: Solid Earth. 2019. V. 124(4). P. 3458–3490.
- Zindler A., Hart S. Chemical geodinamics // Annu. Rev. Earth and Planet. Sci. 1986. V. 14. P. 493–571.
- Zou H., Fan Q. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle end-member and the dynamics of melting beneath Hainan Island // Lithos. 2010. V. 116(1–2). P. 145–152.
Қосымша файлдар
