Determination of seismic regime parameters for seismic hazard assessment within the territory of the Irkutsk oblast

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article considers the problem of determining the parameters of the seismic regime for the territory of the Irkutsk region. To solve this problem, a complete catalog of earthquakes within the studied region with a unified magnitude scale was created for the time period from 1962 to 2021. Determination of seismic regime parameters is an important step for subsequent seismic hazard assessments. The solution of this problem is extremely important for insurance and reinsurance companies, as it makes it possible to use the probabilistic approach in the tasks of earthquake risk assessment, which in turn allows to make the most correct management decisions and ensure the stability of the company’s financial system.

全文:

受限制的访问

作者简介

P. Shebalin

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: p.n.shebalin@gmail.com
俄罗斯联邦, Profsoyuznaya str., 84/32, Moscow, 117997

I. Vorobieva

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: p.n.shebalin@gmail.com
俄罗斯联邦, Profsoyuznaya str., 84/32, Moscow, 117997

S. Baranov

FRC UGS RAS; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: p.n.shebalin@gmail.com

Kola Branch (KB) FRC UGS RAS

俄罗斯联邦, Fersmana str., 14, Apatity, Murmansk region, 184209; Profsoyuznaya str., 84/32, Moscow, 117997

A. Kovalenko

Russian National Reinsurance Company

Email: anton.kovalenko@rnrc.ru
俄罗斯联邦, Gasheka str., 6, Moscow, 125047

A. Livinskiy

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Russian National Reinsurance Company

Email: p.n.shebalin@gmail.com
俄罗斯联邦, Profsoyuznaya str., 84/32, Moscow, 117997; Gasheka str., 6, Moscow, 125047

A. Lykova

Russian National Reinsurance Company

Email: anton.kovalenko@rnrc.ru
俄罗斯联邦, Gasheka str., 6, Moscow, 125047

参考

  1. Ризниченко Ю.В. Об изучении сейсмического режима //Изв. АН СССР. Геофизика. 1958. № 9. С. 1057–1074.
  2. Шебалин П.Н., Гвишиани А.Д., Дзебоев Б.А., Скоркина А.А. Почему необходимы новые подходы к оценке сейсмической опасности? // Доклады Российской Академии наук. Науки о Земле. 2022. Т. 507. № 1. С. 91–97.
  3. Aki K. Maximum likelihood estimate of b in the formula log N = a − bM and its confidence level // Bull. Earthquake Res. Inst. 1965. V. 43. P. 237–239.
  4. Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Phys. Rev. E. 2004. V. 69. 066106.
  5. Baranov S., Narteau C., Shebalin P. Modeling and prediction of aftershock activity // Surveys in Geophysics. 2022.
  6. Bender B. Maximum likelihood estimation of b-values for magnitude grouped data // Bulletin of the Seismological Society of America. 1983. V. 73. P. 831–851.
  7. Cornell C.A. Engineering seismic risk analysis // Bulletin of the Seismological Society of America. 1968. V. 58. Iss. 5. P. 1583–1606.
  8. Gardner J.K., Knopoff L. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? // Bulletin of the Seismological Society of America. 1974. V. 64. P. 1363–1367.
  9. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors // Physica D: Nonlinear Phenomena. 1983. V. 9. № 1–2. P. 189–208. doi: 10.1016/0167-2789(83)90298-1.
  10. Marsan D., Lengliné O. Extending Earthquake’ Reach through Cascading // Science. 2008. V. 319. P. 1076–1079. doi: 10.1126/science.1148783.
  11. Molchan G.M., Dmitrieva O.E. Aftershock Identification: Methods and New Approaches // Geophysical Journal International. 1992. V. 109. P. 501–516. doi: 10.1111/j.1365-246X.1992.tb00113.x.
  12. Munich Re, NatCatService. 2016. https://reliefweb.int/sites/reliefweb.int/files/resources/Loss_events_worldwide_1980-2015.pdf
  13. Reasenberg P. Second-Order Moment of Central California Seismicity, 1969–1982 // Journal of Geophysical Research. 1985. V. 90. P. 5479–5495. doi: 10.1029/JB090iB07p05479.
  14. Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophysical Journal International. 2020. V. 222. Iss. 2. P. 1264–126913. doi: 10.1093/gji/ggaa252.
  15. Shebalin P., Baranov S., Vorobieva I. Earthquake Productivity Law in a Wide Magnitude Range // Frontiers in Earth Science. 2022. V. 10. Article 881425. doi: 10.3389/feart.2022.881425.
  16. Shebalin P.N., Baranov S.V., Vorobieva I.A., Grekov E.M., Krushelnitskii K.V., Skorkina A.A., Selyutskaya O.V. Seismicity Modeling in Tasks of Seismic Hazard Assessment // Doklady Earth Sciences. 2024. V. 515. № 1. P. 514–525. doi: 10.1134/S1028334X23603115, EDN: SNHALD.
  17. Ulomov V.I. Seismic hazard of Northern Eurasia // Annali di Geofisica. 1999. V. 42. Iss. 6. P. 1023–1038.
  18. Vorobieva I., Gvishiani A., Dzeboev B., Dzeranov B., Barykina Y., Antipova A. Nearest neighbor method for discriminating aftershocks and duplicates when merging earthquake catalogs // Front. Earth Sci. 2022. V. 10. P. 820277. doi: 10.3389/feart.2022.820277.
  19. Wesnousky S.G. Crustal deformation processes and the stability of the Gutenberg‐Richter relationship // Bulletin of the Seismological Society of America. 1999. V. 89(4). P. 1131–1137.
  20. Wells D.L., Coppersmith K.J. New Empirical Relationships among Magnitude, Rupture Length, Rupture width, Rupture Area, and Surface Displacement. // Bulletin of the Seismological Society of America. 1994. V. 84. P. 974–1002.
  21. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2847–2864. doi: 10.1002/jgrb.50179.
  22. Zechar J.D., Gerstenberger M.C., Rhoades D.A. Likelihood-based tests for evaluating space-rate-magnitude forecasts // Bulletin of the Seismological Society of America. 2010. V. 100(3). P. 1184–1195. doi: 10.1785/0120090192.
  23. Zhuang J., Ogata Y., Vere-Jones D. Stochastic Declustering of Space-Time Earthquake Occurrences // Journal of the American Statistical Association. 2002. V. 97(458). P. 369–380.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Boundary of the study area (Irkutsk region and adjacent territories).

下载 (23KB)
3. Fig. 2. Recurrence graph of a calibrated earthquake catalog, N is the number of earthquakes with a magnitude (M) above a given level. 1 – distribution approximation and parameter b estimate obtained using the Aki method [Aki, 1965].

下载 (15KB)
4. Fig. 3. Estimation of the correlation dimension df [Grassberger, Procaccia, 1983] based on the calibrated catalog data, M ≥ Mc = 3.5. 1 – distribution approximation and estimation of the parameter df.

下载 (17KB)
5. Fig. 4. Distribution of minimum values ​​of the proximity function for the events of the catalog. 1 – position of the half-height of the right branch of the distribution of minimum values ​​of the proximity function (0.7); 2 – preliminary value η0 = 10(–0.94); 3 – position of the right mode (–0.12).

下载 (12KB)
6. Fig. 5. Estimation of the parameter η0 based on the calibrated catalog data, M ≥ Mc = 3.5. a — weighted distribution densities: 1 — kprandom(η) distribution, 2 — (1–k)pclustered(η) distribution, 3 — preal(η) distribution; b — distribution functions: 4 — Frandom(η) function, 5 — 1-Fclustered(η) function, 6 — Freal(η) function, 7 — Fclustered(η) function.

下载 (16KB)
7. Fig. 6. Seismic activity variations a = log10 ν, where ν is the estimated number of earthquakes with magnitude M ≥3.5 calculated using formula (5). a – seismic activity variation estimate map, activity values ​​are tied to scanning circle centers; b – earthquake epicenter map in a scanning circle with center coordinates (108.6°E, 55.5°N), earthquake sample center (109.4°E, 55.2°N) is offset from the circle center; c – example of automated scanning circle center transfer to the average position of sample earthquakes; d – seismic activity variation estimate map with values ​​tied to the average position of sample earthquakes. 1 – earthquake epicenters from background event catalog; 2 – seismic activity variation scale a.

下载 (19KB)
8. Fig. 7. Variations in the slope of the b-frequency graph with reference to the average position of the sample earthquakes. 1 – epicenters of earthquakes from the background events catalog; 2 – scale of variations in the slope of the b-frequency graph.

下载 (75KB)
9. Fig. 8. Comparison of recurrence graphs. 1 – recurrence graph of registered seismicity; 2 – recurrence graph reconstructed from the map of spatial variations of seismic activity ν(3.5) and the map of the slope of the recurrence graph b.

下载 (9KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».