Model of the seismic rupture surface of the Aykol earthquake, China, January 22, 2024, based on SAR interferometry data
- 作者: Timoshkina E.P.1, Konvisar A.M.1,2, Mikhailov V.O.1,2, Ponomarev A.V.1, Smirnov V.B.2,1
-
隶属关系:
- Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 编号 6 (2024)
- 页面: 9-17
- 栏目: Articles
- URL: https://bakhtiniada.ru/0203-0306/article/view/296445
- DOI: https://doi.org/10.31857/S0203030624060027
- EDN: https://elibrary.ru/HZEVOE
- ID: 296445
如何引用文章
详细
In this study the modeling of the rupture surface of the MW = 7.0 Aykol earthquake, which occurred on the border of PRC and Kyrgyzstan on January 22, 2024, as well as the rupture surface of its strongest aftershock on January 29, 2024, with magnitude MW = 5.7 has been carried out using satellite radar interferometry data. We derived displacement fields of the Earth’s surface in the satellite line-of-sight for these events using Sentinel-1A imagery, and resolved the inverse problem of estimating displacement fields on the rupture surfaces. The resulting rupture surface models reveal the presence of fault systems dipping towards one another. The fault plane of the main event is a thrust with left-lateral shear component dipping to the northwest. During the development of the aftershock process, a backthrust dipping to the southeast developed in the frontal region, displacing the western portion of the frontal thrust formed during the main shock. Such fault dynamics is a result of the complex structure of the fault zones in the studied region. Backthrusts in this area had been mapped during previous field works.
全文:

作者简介
E. Timoshkina
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: alexkonvisar@gmail.com
俄罗斯联邦, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242
A. Konvisar
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: alexkonvisar@gmail.com
Faculty of Physics, Lomonosov Moscow State University
俄罗斯联邦, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242; Leninskie Gory, 1, Moscow, 119991V. Mikhailov
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: alexkonvisar@gmail.com
Faculty of Physics, Lomonosov Moscow State University
俄罗斯联邦, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242; Leninskie Gory, 1, Moscow, 119991A. Ponomarev
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: alexkonvisar@gmail.com
俄罗斯联邦, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242
V. Smirnov
Lomonosov Moscow State University; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: alexkonvisar@gmail.com
Faculty of Physics, Lomonosov Moscow State University
俄罗斯联邦, Leninskie Gory, 1, Moscow, 119991; Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242参考
- Буртман В.С., Молнар П., Скобелев С.Ф. Новые данные о современных смещениях по Таласо-Ферганскому разлому // Докл. РАН. 1997. Т. 352. С. 214–217.
- Вакарчук Р.Н., Татевосян Р.Э., Аптекман Ж.Я., Быкова В.В. Рачинское землетрясение 1991 г. на Кавказе: многоактная модель очага с компенсационным типом движения // Физика Земли. 2013. № 5. С. 58–64.
- Гребенникова В.В., Фролова А.Г. Новые данные по Суусамырскому землетрясению, 19 августа 1992 г. (по анализу записей сильных афтершоков) // Вестник Института сейсмологии НАН КР. 2019. № 1(13). С. 26–43.
- Макаров В.И., Алексеев Д.В., Баталев В.Ю., Баталева Е.А., Беляев И.В., Брагин В.Д., Дергунов Н.Т., Ефимова Н.Н., Леонов М.Г., Мунирова Л.М., Павленкин А.Д., Рёкер С.В., Рослов Ю.В., Рыбин А.К., Щелочков Г.Г. Поддвиг Тарима под Тянь-Шань и глубинная структура зоны их сочленения: Основные результаты сейсмических исследований по профилю MANAS (Кашгар Сонкёль) // Геотектоника. 2010. № 2. С. 23–42.
- Татевосян Р.Э., Пономарев А.В., Тимошкина Е.П., Аптекман Ж.Я. Компенсационные движения в очаговой зоне высокомагнитудного роя землетрясений 2023 г. в провинции Герат, Афганистан // Физика Земли. 2024. № 4. С. 64–75.
- Arrowsmith R., Crosby C.J., Korzhenkov A.M., Mamyrov E., Povolotskaya I., Guralnik B., Landgraf A. Surface rupture of the 1911 Kebin (Chon-Kemin) earthquake, Northern Tien Shan, Kyrgyzstan // Geological Society Special Publication. 2017. V. 432(1). P. 233–253.
- Avouac J.P., Tapponnier P., Bai M.X., You H.C., Wang G. Active faulting and folding in the northern Tian Shan and rotation of Tarim relative to Dzungarian and Kazakhstan // J. Geophys. Res. 1993. V. 98. P. 6755–6804.
- Chen Q., Fu B., Shi P., Li Z. Surface Deformation Associated with the 22 August 1902 Mw 7.7 Atushi Earthquake in the Southwestern Tian Shan, Revealed from Multiple Remote Sensing Data // Remote Sens. 2022. V. 14. P. 1663.
- Costantini M., Rosen P.A. A generalized phase unwrapping approach for sparse data (IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293)). Hamburg, Germany: IEEE, 1999. P. 267–269.
- Delvaux D., Abdrakhmatov K.E., Lemzin I.N., Strom A.L. Landslides and surface breaks of the 1911 MS 8.2 Kemin earthquake // Russian Geology and Geophysics. 2001. V. 42(10). P. 1583–1592.
- DeMets C., Gordon R.G., Argus D.F., Stein S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions // Geophys. Res. Lett. 1994. V. 21. P. 2191–2194.
- Ghose S., Mellors R.J., Korjenkov A.M., Hamburger M.W., Pavlis T.L., Pavlis G.L. et al. The Ms = 7.3 1992 Suusamyr, Kyrgyzstan, earthquake in the Tien Shan: 2. Aftershock focal mechanisms and surface deformation // Bull. Seismol. Soc. Am. 1997. V. 87(1). P. 23–38.
- Jourdon A., Pourhiet L.L., Petit C., Rolland Y. The deep structure and reactivation of the Kyrgyz Tien Shan: Modelling the past to better constrain the present // Tectonophysics. 2017. V. 746. P. 530–548.
- Kulikova G., Krüger F. Source process of the 1911 M 8.0 Chon–Kemin earthquake: investigation results by analogue seismic records // Geophysics Journal International. 2015. V. 201. P. 1891–1911.
- Kulikova G., Krüger F. Historical Seismogram Reproductions for the Source Parameters Determination of the 1902, Atushi (Kashgar) Earthquake // J. Seismol. 2017. V. 21. P. 1577–1597.
- Li Y., Liu M., Hao M. et al. Active crustal deformation in the tian Shan region // Tectonophysics. 2021. V. 811.
- Pollitz F.F. Coseismic deformation from earthquake faulting on a layered spherical Earth // Geophys. J. Int. 1996. V. 125. № 1. P. 1–14.
- Wang C.Y., Yang Z.E., Luo H., Mooney W. Crustal structure of the northern margin of the eastern Tien Shan, China, and its tectonic implications for the 1906 M ~7.7 Manas earthquake // Earth Planet. Sci. Lett. 2004. V. 223. P. 187–202.
- Wu C., Zheng W., Zhang Z., Jia Q., Yu J., Zhang H., Yao Y., Liu J., Han G., Chen J. Oblique thrust of the Maidan fault and late Quaternary tectonic deformation in the southwestern Tian Shan, northwestern China // Tectonics. 2019. V. 38. P. 2625–2645.
- Yang S.M., Li J., Wang Q. The deformation pattern and fault rate in the Tianshan Mountains inferred form GPS observations // Science in China Series D‐Earth Sciences. 2008. V. 51(8). P. 1064–1080.
- Yao Y., Wen S., Yang L., Wu C., Sun X., Wang L., Zhang Z. A Shallow and left-lateral rupture event of the 2021 Baicheng earthquake: Implications for the diffuse deformation of Southern Tianshan // Earth and Space Science. 2022. V. 9.
- Yu Y.Q., Zhao D.P., Lei J.S. Mantle transition zone discontinuities beneath the Tien Shan // Geophysical Journal International. 2017. V. 211(1). P. 80–92.
- Zelenin E.A, Bachmanov D.M., Garipova S.T., Trifonov V.G., Kozhurin A.I. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset // Earth System Science Data. 2022. V. 14. P. 4489–4503.
- Zubovich A.V., Wang X.Q., Scherba Y.G., Schelochkov G.G., Reilinger R., Reigber C. et al. GPS velocity field for the Tien Shan and surrounding regions // Tectonics. 2010. V. 29.
补充文件
