Динамика обрастания пластин с покрытиями, содержащими наночастицы
- Autores: Kopytina N.I.1,2, Andreeva N.A.3,4, Mosunov A.A.3, Bocharova E.A.2, Sizova O.S.3,4, Bakina O.V.5, Lerner M.I.5
-
Afiliações:
- Institute of Biology of Inland Waters named after I.D. Papanin RAS
- Federal Scientific Center Institute of Biology of the Southern Seas named after A.O. Kovalevsky RAS
- Sevastopol State University
- Institute of Natural and Technical Systems RAS
- Institute of Strength Physics and Materials Science of the Siberian Branch of RAS
- Edição: Volume 51, Nº 2 (2025)
- Páginas: 199-208
- Seção: Articles
- URL: https://bakhtiniada.ru/0132-6651/article/view/306786
- DOI: https://doi.org/10.31857/S0132665125020037
- EDN: https://elibrary.ru/hdadcy
- ID: 306786
Citar
Resumo
В прибрежной акватории г. Севастополь (Черное море) с 30 августа по 19 сен‑тября 2022 г. исследованы сообщества микрообрастателей на пластинах из полиметилакрилата (контроль), покрытых противообрастающей эмалью Био‑пласт‑52 и экспериментальными составами, содержащими наночастицы (НЧ) ZnO-FeZnO, CuO-FeCuO, ZnTi2O4-ZnO, ZnTi2O4-TiO2 и Ag-TiO2. Отбор проб проводили на 3, 13 и 20 сутки. Проведен сравнительный анализ сообществ микрообрастателей, сформировавшихся на исследуемых покрытиях. На по‑верхностях обнаружено 72 таксона организмов: бактерии, грибы (33), фототрофы (38). Количество таксонов на покрытиях изменялось от 34 (Биопласт‑52) до 49 (НЧ ZnTi2O4-TiO2). По времени экспозиции количество таксонов в сообществах изменялось от 43 (третьи сутки) до 55 (двадцатые сутки). Соотношение биомассы финального обрастания к биомассе, сформировавшиеся на третьи сутки экспозиции, составляло от 1.6 (НЧ ZnO-FeZnO) до 24 раз (НЧ Ag-TiO2). Вычислен индекс противообрастающей эффективности покрытий (Iэф, %). Лучший результат испытания получен для покрытия, в составе которого были НЧ ZnTi2O4-ZnO (Iэф = 63.78%). В ранне-осенний период в прибрежной зоне г. Севастополь композиции с НЧ CuO-FeCuO и Ag-TiO2 (индексы эффектив‑ности –36.01 и –43.18%) показали себя, как малоперспективные.
Palavras-chave
Sobre autores
N. Kopytina
Institute of Biology of Inland Waters named after I.D. Papanin RAS; Federal Scientific Center Institute of Biology of the Southern Seas named after A.O. Kovalevsky RAS
Email: kopytina_n@mail.ru
152742, Russia, Yaroslavl region, Nekouzsky district, pos. Borok; 299011, Russia, Sevastopol, Nakhimov Ave, 2
N. Andreeva
Sevastopol State University; Institute of Natural and Technical Systems RAS
Email: andreeva.54@list.ru
299053, Russia, Sevastopol, Universitetskaya St, 33; 299011, Russia, Sevastopol, Lenin St, 28
A. Mosunov
Sevastopol State University
Email: kopytina_n@mail.ru
299053, Russia, Sevastopol, Universitetskaya St, 33
E. Bocharova
Federal Scientific Center Institute of Biology of the Southern Seas named after A.O. Kovalevsky RAS
Email: kopytina_n@mail.ru
299011, Russia, Sevastopol, Nakhimov Ave, 2
O. Sizova
Sevastopol State University; Institute of Natural and Technical Systems RAS
Email: kopytina_n@mail.ru
299053, Russia, Sevastopol, Universitetskaya St, 33; 299011, Russia, Sevastopol, Lenin St, 28
O. Bakina
Institute of Strength Physics and Materials Science of the Siberian Branch of RAS
Email: kopytina_n@mail.ru
634021, Russia, Tomsk, Akademicheskiy Ave, 2/4
M. Lerner
Institute of Strength Physics and Materials Science of the Siberian Branch of RAS
Autor responsável pela correspondência
Email: kopytina_n@mail.ru
634021, Russia, Tomsk, Akademicheskiy Ave, 2/4
Bibliografia
- Maan A.M.C., Hofman A.H., de Vos W.M., Kamperman M. Recent developments and practical feasibility of polymer-based antifouling coatings // Advanced Functional Materials, 2020. V. 30. № 32. Article number: 2000936.
- Jin H., Tian L., Bing W. Zhao J., Ren L. Bioinspired marine antifouling coatings: Status, prospects, and future // Progress in Materials Science, 2022. V. 124. Article number: 100889.
- Gutner-Hoch E., Martins R., Maia F., Oliveira T., Shpigel M., Weis M., Tedim I., Benayahu Y. Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus // Environmental pollution (Barking, Essex: 1987), 2019. V. 251. P. 530–537.
- Pérez H., Vargas G., Silva R. Use of Nanotechnology to Mitigate Biofouling in Stainless Steel Devices Used in Food Processing, Healthcare, and Marine Environments // Toxics, 2022. V. 10. № 1. Article number: 35.
- Раилкин А.И., Отвалко Ж.А., Коротков С.И. Концепция экологически безопасной защиты от морского обрастания и ее разработка с использованием каучук-эпоксидных покрытий // Морской биологический журнал, 2017. Т. 2. № 3. С. 40–52.
- Rittschof D., Orihuela B., Genzer J., Efimenko K. PDMS Networks Meet Barnacles: A Complex and Often Toxic Relationship // Biofouling, 2022. V. 38. P. 876–888.
- Dobretsov S., Rittschof D. “Omics” Techniques Used in Marine Biofouling Studies // International journal of molecular sciences, 2023. V. 24. № 13. Article number: 10518.
- Avelelas F., Martins R., Oliveira T., Maia F. Malheiro E., Soares A.M.V.M., Loureiro S., Tedim J. Efficacy and ecotoxicity of novel anti-fouling nanomaterials in target and non-target marine species. Marine biotechnology (New York, N.Y.), 2017. № 19. Р. 164–174.
- Elmas S., Skipper K., Salehifar N., Jamieson T., Andersson G., Nydén M., Leterme S.C., Andersson M.R. Cyclic copper uptake and release from natural seawater: A fully sustainable antifouling technique to prevent marine growth // Environmental science & technology, 2021. V. 55. № 1. P. 757–766.
- Piola R., Leary M., Santander R., Shimeta J. Antifouling performance of copper-containing fused filament fabrication (FFF) 3-D printing polymer filaments for marine applications // The Journal of Bioadhesion and Biofilm Research, 2021. V. 37. Iss. 2. P. 206–221.
- Donnelly B., Sammut K., Tang Y. Materials Selection for Antifouling Systems in Marine Structures // Molecules, 2022. V. 27. Iss. 11. Article number 3408.
- Cao P., Cao Z., Yuan C. Stainless steel coated by Cu NPs via dopamine coupling for antifouling application // Surface and Interface Analysis, 2019. V. 51. Iss. 8. Р. 809–816.
- Jaramillo A.F., Riquelme S., Sánchez-Sanhueza G., Medina C., Solís-Pomar F., Rojas D., Montalba C., Melendrez M.F., Pérez-Tijerina E. Comparative Study of the Antimicrobial Effect of Nanocomposites and Composite Based on Poly (butylene adipate-co-terephthalate) Using Cu and Cu/Cu2O Nanoparticles and CuSO4 // Nanoscale research letters, 2019. V. 14. Article number 158.
- Selim M.S, Samak N.A, Hao Z., Xing J. Facile design of reduced graphene oxide decorated with Cu2O nanocube composite as antibiofilm active material // Materials Chemistry and Physics, 2020. V. 239. № 1. Article number 122300.
- Swar S., Máková V., Horakova J. Kejzlar P. Parma P. Stibor I. A comparative study between chemically modified and copper nanoparticle immobilized Nylon 6 films to explore their efficiency in fighting against two types of pathogenic bacteria // European Polymer Journal, V. 122. Article number 109392.
- Ali A., Jamil M.I., Jiang J., Shoaib M., Amin B.U.l., Luo S., Zhan X., Chen F., Zhang Q. An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications // Journal of Polymer Research, 2020. V. 27. Article number: 85.
- Lopes F.S., Oliveira J.R., Milani J., Oliveira L.D., Machado J.P.B., Trava-Airoldi V.J., Lobo A.O, Marciano F.R. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation // Materials science & engineering C Materials for biological applications, 2017. V. 81. P. 373–379.
- Zhang S., Liang X., Gadd G.M., Zhao Q. Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties // Applied Surface Science, 2019. V. 490. P. 231–241.
- Wachesk C.C., Seabra S.H., Dos Santos T.A.T., Trava-Airoldi V.J., Lobo A.O., Marciano F.R. In vivo biocompatibility of diamond-like carbon films containing TiO2 nanoparticles for biomedical applications // Journal of materials science. Materials in medicine, 2021. V. 32. № 9. Article number: 117.
- Stanić V., Dimitrijević S., Antić-Stanković J., Mitrić M., Jokić B., Plećaš I., Raičević S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders // Applied Surface Science, 2010. V. 256. Iss. 20. P. 6083–6089.
- Nassif L.A., Rioual S., Farah W. Fauchon M., ToueixY., Hellio C., Abboud M., Lescop B. Electrophoretic deposition of zinc alginate coatings on stainless steel for marine antifouling applications // Journal of Environmental Chemical Engineering, 2020. V. 8. Iss. 5. Article number: 104246.
- Soon Z.Y., Jung J.H., Jang M., Kang J.-H., Jang M.-C., Lee J.-S., Kim M. Zinc pyrithione (ZnPT) as an antifouling biocide in the marine environment-a literature review of its toxicity, environmental fates, and analytical methods // Water Air and Soil Pollution, 2019. V. 230. Article number: 310.
- Krishnan M., Sivanandham V., Hans-Uwe D., Murugaiah S.G., Seeni P., Gopalan S., Rathinam A.J. Antifouling assessments on biogenic nanoparticles: A field study from polluted offshore platform // Marine pollution bulletin, 2015. V. 101. № 2. P. 816–825.
- Cao P., He X., Xiao J., Yuan C., Bai X. Covalent bonding of AgNPs to 304 stainless steel by reduction in situ for antifouling applications // Applied Surface Science, 2018. V. 452. P. 201–209.
- Bakina O., Glazkova E., Rodkevich N., Mosunov A., Chzhou V., Lerner M. Electroexplosive synthesis of composite ZnO/ZnFe2O4/Zn nanoparticles with photocatalytic and antibacterial activity // Materials Science in Semiconductor Processing, 2022. V. 152. Article number: 107076.
- Glazkova E., Bakina O., Rodkevich N., Mosunov A., Evstigneev M., Evstigneev V., Klimenko V., Lerner M. Antibacterial Properties of PMMA Functionalized with CuFe2O4 /Cu2O/CuO Nanoparticles // Coatings 2022, V. 12. Article number: 957.
- Эмаль “Биопласт-52”. 2017. Технические условия. ТУ 20.30.12.130-002-03218320-2017. Дата введения 05.09.2017 г.
- Kopytina N.I., Andreeva N.A., Sizova O.S., Mosunov A.A., Evstigneev V.P., Bocharova E.A. Communities of Fungi on Plates Coated with Antifouling Paint Modified by Nanoparticles // Inland Water Biology, 2023. V. 16, № 4. P. 656–663.
- De Hoog G.S., Guarro J., Gene J., Figueras M.J. Atlas of clinical fungi. Utrecht: Reus. 2000. 1126 p.
- Гусляков Н.Е., Закордонец О.А., Герасимюк В.П. Атлас диатомовых водорослей бентоса северо-западной части Черного моря и прилегающих водоемов. Киев: Наукова думка. 1992. 110 c.
- Clarke K.R., Gorley R.N, Somerfield P.J., Warwickb R.M. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: PRIMER-E. 2014. 262 p.
- Шилова О.А., Халаман В.В., Комендантов А.Ю., Кондратенко Ю.А., Ефимова Л.Н., Цветкова И.Н., Кочина Т.А. Исследование процесса биообрастания экологически безопасных лакокрасочных покрытий в естественных условиях Белого моря // Физика и химия стекла, 2021. Т. 47. № 2. С. 209–228.
Arquivos suplementares
