Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

№ 4 (2023)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

КОМПЬЮТЕРНАЯ АЛГЕБРА

ДОПУСТИМЫЙ ПОРЯДОК НА МОНОМАХ ВПОЛНЕ ЗАДАН. КОНСТРУКТИВНОЕ ДОКАЗАТЕЛЬСТВО

Мешвелиани С.Д.

Аннотация

Обсуждаются конструктивное доказательство завершаемости алгоритма NF построения нормальной формы для многочленов нескольких переменных и связанное с ним понятие допустимого упорядочения \({{ < }_{e}}\) на показателях мономов. В классической математике свойство обрыва убывающей цепи (well-quasiorder) отношения \({{ < }_{e}}\) выводится из леммы Диксона, и этого достаточно для обоснования завершаемости алгоритма NF. В доказательном программировании на основе конструктивной теории типов (Coq, Agda) требуется более сильное (в конструктивной математике) свойство: свойство вполне-заданности отношения порядка (соответствует понятию well-founded – в конструктивном определении, как подобие свойства фундированности). Предлагается конструктивное доказательство этой теоремы (T) для \({{ < }_{e}}\), основанное на некотором известном методе, который здесь назовем “метод образцов”. Эта теорема о вполне-заданности произвольного допустимого упорядочения важна и сама по себе, независимо от алгоритма NF. Нам не известны другие работы, в которых (конструктивно) доказана эта теорема. Оказывается, она не очень сложно следует из результатов, достигнутых другими исследователями еще в 2003-м году. Доказательство запрограммировано автором на языке Agda в виде библиотеки AdmissiblePPO-wellFounded доказательных программ вычислительной алгебры, разработанной автором. Разработка включает в себя применение этой теоремы к доказательному программированию алгоритма NF. Поэтому библиотека также содержит часть доказательных программ алгебры многочленов, которая по объему значительно больше того, что нужно для доказательства теоремы T.

Программирование. 2023;(4):3-20
pages 3-20 views

ПРИМЕНЕНИЕ В GINV ДИНАМИЧЕСКОГО ПЕРЕРАСПРЕДЕЛЕНИЯ ПАМЯТИ

Блинков Ю.А., Щетинин Е.Ю.

Аннотация

Представлена новая версия GInv (Gröbner Involutive) по вычислению инволютивных базисов Грёбнера в виде библиотеки на языке C++11. В GInv для динамических структур данных, таких как списки, красно-черные и бинарные деревья, библиотеки GMP для вычислений с целыми числами с произвольной точностью использовано объектно-ориентированное перераспределение памяти. Интерфейс пакета оформлен в виде модуля языка Python3.

Программирование. 2023;(4):21-26
pages 21-26 views

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПОСТОЯННОГО МОМЕНТА НА ПОЛОЖЕНИЯ РАВНОВЕСИЯ СПУТНИКА НА КРУГОВОЙ ОРБИТЕ С ПРИМЕНЕНИЕМ МЕТОДОВ КОМПЬЮТЕРНОЙ АЛГЕБРЫ

Гутник С.А., Сарычев В.А.

Аннотация

С использованием методов компьютерной алгебры проведено исследование положений равновесия спутника, движущегося по круговой орбите под действием гравитационного и постоянного моментов. Основное внимание уделено исследованию положений равновесия для случаев, когда вектор постоянного момента параллелен плоскостям, образуемым главными центральными осями инерции спутника. С использованием методов построения базисов Гребнера проведена редукция системы шести алгебраических уравнений, определяющих равновесные ориентации спутника, к одному алгебраическому уравнению шестого порядка от одной неизвестной. Проведена классификация областей с равным числом положений равновесия с применением алгебраических методов построения дискриминантных гиперповерхностей. Построены бифуркационные кривые в пространстве параметров задачи, которые задают границы областей с равным числом положений равновесия спутника. Выполнен сравнительный анализ влияния выбора порядка переменных при построении базисов Гребнера для решения рассматриваемой задачи. С использованием предложенного подхода показано, что спутник с неравными главными центральными моментами инерции при действии постоянного момента имеет на круговой орбите не более 24 положений равновесия.

Программирование. 2023;(4):27-32
pages 27-32 views

СРЕДСТВА КОМПЬЮТЕРНОЙ АЛГЕБРЫ ДЛЯ ГЕОМЕТРИЗАЦИИ УРАВНЕНИЙ МАКСВЕЛЛА

Королькова А.В., Геворкян М.Н., Кулябов Д.С., Севастьянов Л.А.

Аннотация

При расчете оптических приборов в рамках геометризованной теории Максвелла используются широко известные формализмы общей теории относительности и дифференциальной геометрии. В частности, для подобных вычислений требуется знать аналитический вид уравнений геодезических. Что приводит к необходимости вычислять большое количество однообразных математических выражений. Одним из предназначений средств компьютерной алгебры является облегчение работы исследователя путем автоматизации громоздких символьных расчетов. Таким образом, использование систем компьютерной алгебры представляется вполне очевидным действием. В работе рассмотрено несколько свободных реализаций символьных вычислений для аппарата общей теории относительности. В конце статьи приводится практический пример символьных расчетов для геометризованной теории Максвелла.

Программирование. 2023;(4):33-38
pages 33-38 views

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ

ВАРИАНТ РЕАЛИЗАЦИИ ПРОЦЕДУРЫ АНАЛИЗА ИНФОРМАЦИОННЫХ ПОТОКОВ В ПРОГРАММНЫХ БЛОКАХ PL/SQL С ИСПОЛЬЗОВАНИЕМ ПЛАТФОРМЫ PLIF

Тимаков А.А.

Аннотация

Формальное доказательство эффективности реализуемых мер защиты и безопасности вычислений (обработки информации) является важнейшим условием доверия к критическим информационным системам. Важно понимать, что при построении таких систем формальная проверка безопасности должна применяться на всех инфраструктурных уровнях (от физического до прикладного). В настоящее время на практике проблемой остается формальная проверка безопасности вычислений на прикладном уровне, требующая сложной разметки элементов среды вычислений. Для решения данной задачи традиционно используются методы, в основе которых лежит контроль информационных потоков (КИП). В отличие от методов на основе управления доступом, нашедших широкое практическое применение в операционных системах (ОС) и системах управления базами данных (СУБД), КИП в программном обеспечении на практике применяется весьма ограниченно и в основном сводится к анализу помеченных данных – Taint Tracking. В работе приводится вариант реализации КИП в программных блоках PL/SQL с использованием платформы PLIF. Кроме того, описана общая схема проверки безопасности вычислений в приложениях уровня предприятия, работающих с реляционными базами данных. Преимуществом подхода можно считать явное разделение функций разработчиков программного обеспечения и аналитиков безопасности.

Программирование. 2023;(4):39-57
pages 39-57 views

АНАЛИЗ ДАННЫХ

ПРИМЕНЕНИЕ ИМИТАЦИОННОГО КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ К ЗАДАЧЕ ОБЕЗЛИЧИВАНИЯ ПЕРСОНАЛЬНЫХ ДАННЫХ. ОЦЕНКА СОСТОЯНИЯ И ОСНОВНЫЕ ПОЛОЖЕНИЯ

Борисов А.В., Босов А.В., Иванов А.В.

Аннотация

В статье представлена первая часть исследования по проблеме автоматизированной обработки персональных данных с целью их обезличивания и анализа. Эта часть носит обзорный характер и ставит целью анализ состояния исследований в данной области и систематизацию имеющихся результатов. Представлены результаты анализа широкого круга вопросов обезличивания, сформировавшие системное понимание состояния исследований и обосновавшие выбор направления для дальнейшего изучения. Вначале сформулированы определения основных терминов и понятий, используемых в связи с обезличиванием персональных данных, в т.ч. в увязке с законодательством РФ. Направления исследований сгруппированы по четырем разделам: методы обезличивания, проблемы реализации, приложения обработки обезличенных данных, вопросы деобезличивания. По каждой из групп методов обезличивания – рандомизации, группировке, распределению данных и контролю приложений – даны описания основных алгоритмов, проанализированы их достоинства и недостатки. Проблемы реализации затрагивают такие понятия как полезность обезличенных данных, ограничения применимости универсальных алгоритмов и надежность в отношении сохранения анонимности субъектов персональных данных. В числе прикладных решений, сформировавших востребованность обработки обезличенных данных, обсуждаются медицинские, биологические, генетические исследования и охрана правопорядка. В заключительной части упоминаются наиболее резонансные факты деобезличивания и дается небольшой обзор прессы.

Программирование. 2023;(4):58-74
pages 58-74 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».