Synthesis of nickel(II) complex with 2,6-dichlorophenyl-substituted pyridylpyrazole
- 作者: Nikovskii I.A.1, Safiullina E.S.1, Nelyubina Y.V.1,2
-
隶属关系:
- Nesmeyanov Institute of Organoelement Compounds
- Moscow Institute of Physics and Technology
- 期: 卷 51, 编号 5 (2025)
- 页面: 289-297
- 栏目: Articles
- URL: https://bakhtiniada.ru/0132-344X/article/view/306411
- DOI: https://doi.org/10.31857/S0132344X25050016
- EDN: https://elibrary.ru/kwfzvh
- ID: 306411
如何引用文章
详细
The mononuclear nickel(II) complex [L2Ni(CH3OH)]Cl (I) was synthesized by the interaction of new ligand 2-(2,6-dichlorophenyl)-5-(pyridin-2-yl)-2,4-dihydro-3H-pyrazol-3-one (L) with nickel(II) chloride. The solvate of complex I with methanol [L2Ni(CH3OH)]Cl·3CH3OH and the initial ligand L were characterized by X-ray diffraction analysis (CCDC № 2314989 (I), 2314988 (L)). It was observed that ligand L exists in the pyrazolone form based on 1H NMR data, whereas in complex I, it is found in the pyrazolol form according to X-ray diffraction data. Complex I is a unique example of a pyrazolol complex in which the oxygen atom does not engage in coordinating with the transition metal ion to create the coordination polymer.
作者简介
I. Nikovskii
Nesmeyanov Institute of Organoelement Compounds
Email: igornikovskiy@mail.ru
Moscow, Russia
E. Safiullina
Nesmeyanov Institute of Organoelement Compounds
Email: igornikovskiy@mail.ru
Moscow, Russia
Yu. Nelyubina
Nesmeyanov Institute of Organoelement Compounds; Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: igornikovskiy@mail.ru
Moscow, Russia; Dolgoprudny, Moscow Region, Russia
参考
- Khusnutdinova J.R., Milstein D. // Angew. Chem. Int. Ed. 2015. V. 54. P. 12236. https://doi.org/10.1002/anie.201503873
- Kumar A., Daw P., Milstein D. // Chem. Rev. 2021. V. 122. P. 385. https://doi.org/10.1021/acs.chemrev.1c00412
- Peris E., Crabtree R.H. // Chem. Soc. Rev. 2018. V. 47. P. 1959. https://doi.org/10.1039/C7CS00693D
- Wodrich M.D., Hu X. // Nat. Rev. Chem. 2017. V. 2. P. 0099. https://doi.org/10.1038/s41570-017-0099
- Gunanathan C., Milstein D. // Acc. Chem. Res. 2011 V. 44. P. 588. https://doi.org/10.1021/ar2000265
- Frey M. // ChemBioChem. 2002. V. 3. P. 153. https://doi.org/10.1002/1439-7633(20020301)3:2/ 3<153::AID-CBIC153>3.0.CO;2-B
- Varela-Álvarez A., Musaev D.G. // Chem. Sci. 2013. V. 4. P. 3758. https://doi.org/10.1039/C3SC51723C
- Thenarukandiyil R., Paenurk E., Wong A. et al. // Inorg. Chem. 2021. V. 60. P. 18296. https://doi.org/10.1021/acs.inorgchem.1c02925
- Lindner R., van den Bosch B., Lutz M. et al. // Organometallics. 2011. V. 30. P. 499. https://doi.org/10.1021/om100804k
- Ben-Ari E., Leitus G., Shimon L.J. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 15390–15391. https://doi.org/10.1021/ja066411i
- Yang X., Hall M.B. // J. Am. Chem. Soc. 2010. V. 132. P. 120. https://doi.org/10.1021/ja9041065
- Scharf A., Goldberg I., Vigalok A. // J. Am. Chem. Soc. 2013. V. 135. P. 967. https://doi.org/10.1021/ja310782k
- Elsby M.R., Baker R.T. // Chem. Soc. Rev. 2020. V. 49. P. 8933. https://doi.org/10.1039/D0CS00509F
- Roussel R., DeGuerrero M.O., Spegt P. et al. // J. Heterocycl. 1982. V. 19. P. 785–796. https://doi.org/10.1002/jhet.5570190416
- Frank J., Katritzky A.R. // J. Chem. Soc., Perkin Trans. 2. 1976. P. 1428. https://doi.org/10.1039/P29760001428
- Moore C.M., Dahl E.W., Szymczak N.K. // Curr. Opin. Chem. Biol. 2015. V. 25. P. 9. https://doi.org/10.1016/j.cbpa.2014.11.021
- Al-Otaibi J.S. // SpringerPlus. 2015. V. 4. P. 1. https://doi.org/10.1186/s40064-015-1363-2
- Pietrzycki W.A., Sepioł J., Tomasik P. et al. // Bull. Soc. Chim. 1993. V. 102. P. 709. https://doi.org/10.1002/bscb.19931021105
- Langer R., Diskin-Posner Y., Leitus G. et al. // Angew. Chem. 2011. V. 123. P. 10122. https://doi.org/10.1002/anie.201104542
- Langer R., Leitus G., Ben-David Y. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 2120. https://doi.org/10.1002/anie.201007406
- Srimani D., Ben-David Y., Milstein D. // Angew. Chem. Int. Ed. 2013. V. 52. https://doi.org/10.1002/ange.201300574
- Dupau P., Tran Do M.L., Gaillard S., Renaud J.-L. // Angew. Chem. Int. Ed. 2014 V. 53. P. 13004. https://doi.org/10.1002/anie.201407613
- Zell T., Milstein D. // Acc. Chem. Res. 2015. V. 48. P. 1979. https://doi.org/10.1021/acs.accounts.5b00027
- Polezhaev A.V., Chen C.H., Kinne A. et al. // Inorg. Chem. 2017. V. 56. P. 9505. https://doi.org/10.1021/acs.inorgchem.7b00785
- Kuwata S., Ikariya T. // Chem. Comm. 2014. V. 50. P. 14290. https://doi.org/10.1039/C4CC04457F
- Pavlov A.A., Aleshin D.Y., Nikovskiy I.A. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 2819. https://doi.org/10.1002/ejic.201900432
- Tasker S.Z., Standley E.A., Jamison T.F. // Nature. 2014. V. 509. P 299. https://doi.org/10.1038/nature13274
- Chen F., Di Y.Y., Zhang G. // J. Chem. Soc. Pak. 2023. V. 45. P. 19. https://doi.org/10.52568/001191/JCSP/45.01.2023
- Nikovskiy I., Polezhaev A., Novikov V. et al. // Chem. Eur. J. 2020. V. 26. P. 5629. https://doi.org/10.1002/chem.202000047
- Strunin D.D., Nikovskii I.A., Dan’shina A.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 384. https://doi.org/10.1134/S1070328424600645
- Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
- Dolomanov O.V., Bourhis L.J., Gildea, R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Demaison J., Császár A.G. // J. Mol. Struct. 2012. V. 1023. P. 7. https://doi.org/10.1016/j.molstruc.2012.01.030
- Constable E.C., Housecroft C.E. // Molecules. 2019. V. 24. P. 3951. https://doi.org/10.3390/molecules24213951
- Teratani T., Koizumi T.A., Yamamoto T. et al. // Inorg. Chem. Commun. 2011. V. 14. P. 836. https://doi.org/10.1016/j.inoche.2011.03.001
- Crabtree R.H. // New J. Chem. 2011. V. 35. P. 18. https://doi.org/10.1039/C0NJ00776E
补充文件
