Synthesis of nickel(II) complex with 2,6-dichlorophenyl-substituted pyridylpyrazole
- Авторлар: Nikovskii I.A.1, Safiullina E.S.1, Nelyubina Y.V.1,2
-
Мекемелер:
- Nesmeyanov Institute of Organoelement Compounds
- Moscow Institute of Physics and Technology
- Шығарылым: Том 51, № 5 (2025)
- Беттер: 289-297
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0132-344X/article/view/306411
- DOI: https://doi.org/10.31857/S0132344X25050016
- EDN: https://elibrary.ru/kwfzvh
- ID: 306411
Дәйексөз келтіру
Аннотация
The mononuclear nickel(II) complex [L2Ni(CH3OH)]Cl (I) was synthesized by the interaction of new ligand 2-(2,6-dichlorophenyl)-5-(pyridin-2-yl)-2,4-dihydro-3H-pyrazol-3-one (L) with nickel(II) chloride. The solvate of complex I with methanol [L2Ni(CH3OH)]Cl·3CH3OH and the initial ligand L were characterized by X-ray diffraction analysis (CCDC № 2314989 (I), 2314988 (L)). It was observed that ligand L exists in the pyrazolone form based on 1H NMR data, whereas in complex I, it is found in the pyrazolol form according to X-ray diffraction data. Complex I is a unique example of a pyrazolol complex in which the oxygen atom does not engage in coordinating with the transition metal ion to create the coordination polymer.
Негізгі сөздер
Авторлар туралы
I. Nikovskii
Nesmeyanov Institute of Organoelement Compounds
Email: igornikovskiy@mail.ru
Moscow, Russia
E. Safiullina
Nesmeyanov Institute of Organoelement Compounds
Email: igornikovskiy@mail.ru
Moscow, Russia
Yu. Nelyubina
Nesmeyanov Institute of Organoelement Compounds; Moscow Institute of Physics and Technology
Хат алмасуға жауапты Автор.
Email: igornikovskiy@mail.ru
Moscow, Russia; Dolgoprudny, Moscow Region, Russia
Әдебиет тізімі
- Khusnutdinova J.R., Milstein D. // Angew. Chem. Int. Ed. 2015. V. 54. P. 12236. https://doi.org/10.1002/anie.201503873
- Kumar A., Daw P., Milstein D. // Chem. Rev. 2021. V. 122. P. 385. https://doi.org/10.1021/acs.chemrev.1c00412
- Peris E., Crabtree R.H. // Chem. Soc. Rev. 2018. V. 47. P. 1959. https://doi.org/10.1039/C7CS00693D
- Wodrich M.D., Hu X. // Nat. Rev. Chem. 2017. V. 2. P. 0099. https://doi.org/10.1038/s41570-017-0099
- Gunanathan C., Milstein D. // Acc. Chem. Res. 2011 V. 44. P. 588. https://doi.org/10.1021/ar2000265
- Frey M. // ChemBioChem. 2002. V. 3. P. 153. https://doi.org/10.1002/1439-7633(20020301)3:2/ 3<153::AID-CBIC153>3.0.CO;2-B
- Varela-Álvarez A., Musaev D.G. // Chem. Sci. 2013. V. 4. P. 3758. https://doi.org/10.1039/C3SC51723C
- Thenarukandiyil R., Paenurk E., Wong A. et al. // Inorg. Chem. 2021. V. 60. P. 18296. https://doi.org/10.1021/acs.inorgchem.1c02925
- Lindner R., van den Bosch B., Lutz M. et al. // Organometallics. 2011. V. 30. P. 499. https://doi.org/10.1021/om100804k
- Ben-Ari E., Leitus G., Shimon L.J. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 15390–15391. https://doi.org/10.1021/ja066411i
- Yang X., Hall M.B. // J. Am. Chem. Soc. 2010. V. 132. P. 120. https://doi.org/10.1021/ja9041065
- Scharf A., Goldberg I., Vigalok A. // J. Am. Chem. Soc. 2013. V. 135. P. 967. https://doi.org/10.1021/ja310782k
- Elsby M.R., Baker R.T. // Chem. Soc. Rev. 2020. V. 49. P. 8933. https://doi.org/10.1039/D0CS00509F
- Roussel R., DeGuerrero M.O., Spegt P. et al. // J. Heterocycl. 1982. V. 19. P. 785–796. https://doi.org/10.1002/jhet.5570190416
- Frank J., Katritzky A.R. // J. Chem. Soc., Perkin Trans. 2. 1976. P. 1428. https://doi.org/10.1039/P29760001428
- Moore C.M., Dahl E.W., Szymczak N.K. // Curr. Opin. Chem. Biol. 2015. V. 25. P. 9. https://doi.org/10.1016/j.cbpa.2014.11.021
- Al-Otaibi J.S. // SpringerPlus. 2015. V. 4. P. 1. https://doi.org/10.1186/s40064-015-1363-2
- Pietrzycki W.A., Sepioł J., Tomasik P. et al. // Bull. Soc. Chim. 1993. V. 102. P. 709. https://doi.org/10.1002/bscb.19931021105
- Langer R., Diskin-Posner Y., Leitus G. et al. // Angew. Chem. 2011. V. 123. P. 10122. https://doi.org/10.1002/anie.201104542
- Langer R., Leitus G., Ben-David Y. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 2120. https://doi.org/10.1002/anie.201007406
- Srimani D., Ben-David Y., Milstein D. // Angew. Chem. Int. Ed. 2013. V. 52. https://doi.org/10.1002/ange.201300574
- Dupau P., Tran Do M.L., Gaillard S., Renaud J.-L. // Angew. Chem. Int. Ed. 2014 V. 53. P. 13004. https://doi.org/10.1002/anie.201407613
- Zell T., Milstein D. // Acc. Chem. Res. 2015. V. 48. P. 1979. https://doi.org/10.1021/acs.accounts.5b00027
- Polezhaev A.V., Chen C.H., Kinne A. et al. // Inorg. Chem. 2017. V. 56. P. 9505. https://doi.org/10.1021/acs.inorgchem.7b00785
- Kuwata S., Ikariya T. // Chem. Comm. 2014. V. 50. P. 14290. https://doi.org/10.1039/C4CC04457F
- Pavlov A.A., Aleshin D.Y., Nikovskiy I.A. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 2819. https://doi.org/10.1002/ejic.201900432
- Tasker S.Z., Standley E.A., Jamison T.F. // Nature. 2014. V. 509. P 299. https://doi.org/10.1038/nature13274
- Chen F., Di Y.Y., Zhang G. // J. Chem. Soc. Pak. 2023. V. 45. P. 19. https://doi.org/10.52568/001191/JCSP/45.01.2023
- Nikovskiy I., Polezhaev A., Novikov V. et al. // Chem. Eur. J. 2020. V. 26. P. 5629. https://doi.org/10.1002/chem.202000047
- Strunin D.D., Nikovskii I.A., Dan’shina A.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 384. https://doi.org/10.1134/S1070328424600645
- Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
- Dolomanov O.V., Bourhis L.J., Gildea, R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Demaison J., Császár A.G. // J. Mol. Struct. 2012. V. 1023. P. 7. https://doi.org/10.1016/j.molstruc.2012.01.030
- Constable E.C., Housecroft C.E. // Molecules. 2019. V. 24. P. 3951. https://doi.org/10.3390/molecules24213951
- Teratani T., Koizumi T.A., Yamamoto T. et al. // Inorg. Chem. Commun. 2011. V. 14. P. 836. https://doi.org/10.1016/j.inoche.2011.03.001
- Crabtree R.H. // New J. Chem. 2011. V. 35. P. 18. https://doi.org/10.1039/C0NJ00776E
Қосымша файлдар
