OPTOELECTRONIC AND REDOX PROPERTIES OF NEW DIETHYL-SUBSTITUTED TIN(IV) COMPLEXES WITH SCHIFF BASES CONTAINING A HYDRAZONE FRAGMENT

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New mononuclear tin(IV) complexes were obtained by condensation of diethyltin oxide Et2SnO with a series of Schiff bases containing a hydrazone fragment. The structure of the complexes was confirmed by 1H, 13C, and 119Sn NMR spectroscopy and X-ray diffraction analysis (CCDC 2451176 (2), 2451177 (3), and 2451178 (4)). Optoelectronic and redox properties of complexes 1–4 were studied using UV spectroscopy and cyclic voltammetry, and the energy gap value was estimated. Electrochemical oxidation and reduction of complexes 1, 2, and 3 are irreversible and are accompanied by further chemical transformations. In contrast, electroreduction of complex 4 with a pincer ligand results in the formation of persistent anion–radical particles.

Sobre autores

L. Labutskaya

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: lilia_07g@mail.ru
MSc Moscow, Russian Federation

V. Proshutinskaya

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: lasselanta13@gmail.com
MSc Moscow, Russian Federation

I. Krylova

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: kiv@ioc.ac.ru
ORCID ID: 0000-0002-1143-6788
PhD in Chemistry, researcher Moscow, Russian Federation

P. Shangin

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: shangin@ioc.ac.ru
ORCID ID: 0009-0008-9208-9941
PhD in Chemistry, researcher Moscow, Russian Federation

M. Minyaev

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: mminyaev@ioc.ac.ru
ORCID ID: 0000-0002-4089-3697
PhD in Chemistry, researcher Moscow, Russian Federation

E. Tretyakov

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: tretyakov@ioc.ac.ru
ORCID ID: 0000-0003-1540-7033
Dr. Habil., Prof. Deputy Director for Scientific Work Moscow, Russian Federation

M. Syroeshkin

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: syroeshkin@ioc.ac.ru
ORCID ID: 0000-0001-5754-922X
PhD in Chemistry, Senior Researcher Moscow, Russian Federation

M. Egorov

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: mpe@ioc.ac.ru
ORCID ID: 0000-0002-3161-3585
Dr. Habil., Prof. Research Director Moscow, Russian Federation

E. Nikolaevskaya

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: en@ioc.ac.ru
ORCID ID: 0000-0001-9332-6357
PhD in Chemistry, researcher Moscow, Russian Federation

Bibliografia

  1. Nikolaevskaya E.N., Syroeshkin M.A., Egorov M.P. // Mendeleev Commun. 2023. V. 33. P. 733. https://doi.org/10.1016/j.mencom.2023.10.001
  2. Devi J., Kumar B., Taxak B. // Inorg. Chem. Comm. 2022. V. 139. P. 109208. https://doi.org/10.1016/j.inoche.2022.109208
  3. Baryshnikova S.V., Poddel’sky A.I. // Molecules. 2022. V. 27. P. 3928. https://doi.org/10.3390/molecules27123928
  4. Sahu G., Patra S.A., Pattanayak P.D. et al. // Chem. Commun. 2023. V. 59. P. 10188. https://doi.org/10.1039/D3CC01953E.
  5. Joshi R., Tomar N., Pokharia S. et al. // Results Chem. 2023. V. 5. P. 100955. https://doi.org/10.1016/j.rechem.2023.100955
  6. Greb L. // Eur. J. Inorg. Chem. 2022. P. e202100871. https://doi.org/10.1002/ejic.202100871
  7. Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. P. 439. https://doi.org/10.3390/membranes13040439
  8. Nikolaevskaya E., Syroeshkin M.A., Egorov M.P. et al. // Coord. Chem. Rev. 2025. V. 530. P. 216469. https://doi.org/10.1016/j.ccr.2025.216469
  9. Arsenyeva K.V., Piskunov A.V. // J. Struct. Chem. 2023. V. 64. P. 1. https://doi.org/10.1134/S0022476623010018
  10. Arsenyeva K.V., Klimashevskaya A.V., Pashanova K.I. et al. // Appl. Organomet. Chem. 2022. V. 36. P. e6593. https://doi.org/10.1002/aoc.6593
  11. Yao S., Saddington A., Xiong Y. et al. // Acc. Chem. Res. 2023. V. 56. P. 475. https://doi.org/10.1021/acs.accounts.2c00763
  12. Lee V.Ya. // Mendeleev Commun. 2023. V. 33. P. 145. https://doi.org/10.1016/j.mencom.2023.02.001
  13. Arsenyeva K.V., Pashanova K.I., Trofimova O.Yu. // New J. Chem. 2021. V. 45. P. 11758. https://doi.org/10.1039/D1NJ01644J
  14. Kadomtseva A.V., Mochalov G.M., Kuzina O.V. // Russ. J. Org. Chem. 2021. V. 57. P. 879. https://doi.org/10.1134/S1070428021060026
  15. Vishtorskaya A.A., Saverina E.A., Pechennikov V.M. et al. // J. Organomet. Chem. 2018. V. 858. P. 8. https://doi.org/10.1016/j.jorganchem.2018.01.004
  16. Nikolaevskaya E.N., Kansuzyan A.V., Filonova G.E. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 676. https://doi.org/10.1002/ejic.201801259
  17. Pellerito C., Nagy L., Pellerito L. et al. // J. Organomet. Chem. 2006. V. 691. P. 1733. https://doi.org/10.1016/j.jorganchem.2005.12.025
  18. Devi J., Boora A., Rani M. et al. // Anti-Cancer Agents Med. Chem. 2023. V. 23. P. 164. https://doi.org/10.2174/1871520622666220520095549
  19. Pervaiz M., Sadiq A., Sadiq S. et al. // Inorg. Chem. Comm. 2022. V. 137. P. 109206. https://doi.org/10.1016/j.inoche.2022.109206
  20. Arsenyeva K.V., Klimashevskaya A.V., Maleeva A.V. et al. // ChemPlusChem. 2025. V. 90. P. e202400504. https://doi.org/10.1002/cplu.202400504
  21. Klimashevskaya A.., Arsenyeva K.V., Cherkasov A.V. et al. // J. Struct. Chem. 2023. V. 64. P. 2271. https://doi.org/10.1134/S0022476623120016
  22. Klimashevskaya A.V., Arsenyeva K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. P. e202300540. https://doi.org/10.1002/ejic.202300540
  23. Dieng M., Gningue-Sall D., Jouikov V. // Main Group Met. Chem. 2012. V. 35. P. 141. https://doi.org/10.1515/mgmc-2012-0059
  24. Nikolaevskaya E.N., Saverina E.A., Starikova A.A. et al. // Dalton Trans. 2018. V. 47. P. 17127. https://doi.org/10.1039/C8DT03397H
  25. Nikolaevskaya E.N., Shangin P.G., Starikova A.A. et al. // Inorg. Chim. Acta. 2019. V. 495. P. 119007. https://doi.org/10.1016/j.ica.2019.119007
  26. Shangin P.G., Krylova I.V., Lalov A.V. et al. // RSC Adv. 2021. V. 11. P. 21527. https://doi.org/10.1039/D1RA02691G.
  27. Shangin P.G., Akyeva A.Y., Vakhrusheva D.M. et al. // Organometallics. 2023. V. 42. P. 2541. https://doi.org/10.1021/acs.organomet.2c00607
  28. Kozmenkova A.Ya., Timofeeva V.A., Mankaev B.N. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. P. 2755. https://doi.org/10.1002/ejic.202100369
  29. Hossain A.M.S., Méndez-Arriaga J.M., Xia C. et al. // Polyhedron. 2022. V. 217. P. 115692. https://doi.org/10.1016/j.poly.2022.115692
  30. Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 8319. https://doi.org/10.3390/ijms24098319
  31. Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Molecules. 2022. V. 27. P. 8216. https://doi.org/10.3390/molecules27238216
  32. Krylova I.V., Labutskaya L. D., Markova M.O. et al. // New J. Chem. 2023. V. 47. P. 11890. https://doi.org/10.1039/D3NJ01993D
  33. Krylova I.V., Saverina E.A., Rynin S.S. et al. // Mend. Comm. 2020. V. 30. P. 563. https://doi.org/10.1016/j.mencom.2020.09.003
  34. Krylova I.V., Proshutinskaya V.Yu., Labutskaya L.D. et al. // J. Organomet. Chem. 2025. V. 1028. P. 123527. https://doi.org/10.1016/j.jorganchem.2025.123527
  35. Li G., Shi Z., Li X. et al. // J. Chem. Res. 2011. V. 35. P. 278. https://doi.org/10.3184/174751911X130434470627
  36. Ali A.Q., Teoha S.G., Salhin A. et al. // Spectrochim. Acta. A. 2014. V. 125. P. 440. https://doi.org/10.1016/j.saa.2014.01.086
  37. Kulkarni N.V., Revankar V.K., Kirasur B.N. et al. // Med. Chem. Res. 2012. V. 21. P. 663. https://doi.org/10.1007/s00044-011-9576-6
  38. Das K., Dutta M., Das B. et al. // Adv. Synth. Catal. 2019. V. 361. P. 2965. https://doi.org/10.1002/adsc.201900107
  39. Lüning U., Baumstark R., Peters K. et al. // Liebigs Ann. Chem. 1990. P. 129. https://doi.org/10.1002/jlac.199019900124
  40. Bessega T., Chaves O.A., Martins F. M. et al. // Inorg. Chim. Acta. 2019. V. 496. P. 119049. https://doi.org/10.1016/j.ica.2019.119049
  41. Perrin D.D., Armarego W.L.F., Perrin D.R. Purification of Laboratory Chemicals. Oxford: Pergamon Press, 1988.
  42. CrysAlisPro. Version 1.171.41. Rigaku Oxford Diffraction, 2021.
  43. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. http://doi.org/10.1107/S2053273314026370
  44. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.http://doi.org/10.1107/S2053229614024218
  45. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 229. http://doi.org/10.1107/S0021889808042726
  46. Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. P. 2832. https://doi.org/10.1039/B801115J
  47. Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».