Local Atomic Structure of Co(II), Ni(II), and Cu(II) Metallochelates Based on Derivatives of 1-Phenyl-3-Methyl-4-Formyl-5-Pyrazolone and 1-Aminobenzimidazoles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A series of new metallochelates of Co(II), Ni(II) and Cu(II) based on 1-phenyl-3-methyl-4-formyl- 5-pyrazolone and derivatives of 1-aminobenzimidazoles has been obtained. The composition and spectral properties of which were studied using elemental analysis methods, 1H NMR (for HL) and IR spectroscopy. The parameters of the local atomic environment of metal ions in these complex compounds have been determined by X-ray absorption spectroscopy. The experimental structural data are confirmed by the calculation of optimized structures of complexes using the density functional theory method. The important role of additional donor centers (S, Se) and substituents at the imine nitrogen atom in the aminobenzimidazole fragment of ligands on the geometry of the coordination node of complexes is shown.

Sobre autores

A. Shiryaeva

Southern Federal University, Scientific Research Institute of Physics

Email: anastasia.shiryaeva00@mail.ru
Rostov-on-Don, Russia

V. Vlasenko

Southern Federal University, Scientific Research Institute of Physics

Email: anastasia.shiryaeva00@mail.ru
Rostov-on-Don, Russia

A. Burlov

Southern Federal University, Scientific Research Institute of Physical and Organic Chemistry

Email: anastasia.shiryaeva00@mail.ru
Rostov-on-Don, Russia

T. Kuzmenko

Southern Federal University, Scientific Research Institute of Physical and Organic Chemistry

Email: anastasia.shiryaeva00@mail.ru
Rostov-on-Don, Russia

V. Chesnokov

Southern Federal University, Scientific Research Institute of Physical and Organic Chemistry

Email: anastasia.shiryaeva00@mail.ru
Rostov-on-Don, Russia

A. Uraev

Southern Federal University, Scientific Research Institute of Physical and Organic Chemistry

Email: anastasia.shiryaeva00@mail.ru
Rostov-on-Don, Russia

A. Trigub

National Research Center “Kurchatov Institute”

Autor responsável pela correspondência
Email: anastasia.shiryaeva00@mail.ru
Moscow, Russia

Bibliografia

  1. Menezes R.A. and Bhat K.S. // Discov. Appl. Sci., 2025, vol. 7, p. 137. https://doi.org/10.1007/s42452-025-06528-x
  2. Ameziane El Hassani I., Rouzi K., Assila H., et al. // Reactions, 2023, vol. 4, p. 478. https://doi.org/10.3390/reactions4030029
  3. Mustafa G., Zia-ur-Rehman M., Sumrra S.H., et al. // M., J. Mol. Struct., 2022, vol. 1262, p. 133044. https://doi.org/10.1016/j.molstruc.2022.133044
  4. Ebenezer O., Shapi M., and Tuszynski J.A. // Biomedicines, 2022, vol. 10, p. 1124. https://doi.org/10.3390/biomedicines10051124
  5. Parmar N.J. and Teraiya S.B. // J. Coord. Chem., 2009, vol. 62, p. 2388. https://doi.org/10.1080/00958970902833058
  6. Burham N., Abdel-Azeem S.M. and El-Shahat, M.F. // Cent. Eur. J. Chem., 2009, vol. 7, p. 576. https://doi.org/10.2478/s11532-009-0089-9
  7. Parmar N.J., Barad H.A., Pansuriya B.R., and Patel R.A. // J. Coord. Chem., 2011, vol. 64, p. 688. doi: 10.1080/00958972.2011.553675
  8. Marchetti F., Pettinari R. and Pettinari C. // Coord. Chem. Rev., 2015, vol. 303, p. 1. https://doi.org/10.1016/j.ccr.2015.05.003
  9. Бурлов А.С., Кощиенко Ю.В., Власенко В.Г. и др. // Коорд. химия, 2014, том 40, с. 460. https://doi.org/10.7868/S0132344X14080015
  10. Burlov A.S., Uraev A.I., Garnovskii D.A., et al. // J. Mol. Struct., 2014, vol. 1064, p. 111. https://doi.org/10.1016/j.molstruc.2014.02.019
  11. Uraev A.I., Nefedov S.E., Lyssenko K.A., et al. // Polyhedron, 2020, vol. 188, p. 114623. https://doi.org/10.1016/j.poly.2020.114623
  12. Vlasenko V.G., Kubrin S.P., Garnovskii D.A., et al. // Chem. Phys. Lett., 2020, vol. 739, p. 136970. https://doi.org/10.1016/j.cplett.2019.136970
  13. Parihar S., Pathan S., Jadeja R.N, et al. // Inorg. Chem., 2012, V. 51, p. 1152. https://doi.org/10.1021/ic202396q
  14. Borodkina I.G., Burlov A.S., Borodkin G.S., et al. // Russ. J. Gen. Chem., 2016, vol. 86, p. 876. https://doi.org/10.1134/S1070363216040198
  15. Харабаев Н.Н., Минкин В.И. // Коорд. химия, 2017, том 43, с. 131. https://doi.org/10.7868/S0132344X17030033
  16. Кузьменко В.В., Кузьменко Т.А., Пожарский А.Ф., Крышталюк О.В. // Химия гетероцикл. соед., 1990, № 12, с. 1689.
  17. Порай-Кошиц Б.А. и Квитко И.Я. // Журн. общ. химии, 1966, T. 2, № 12, c. 4050.
  18. Frisch M.J., Trucks G.W., Schlegel H.B., et al. // Gaussian 09, Wallingford (CT, USA): Gaussian, Inc., 2009.
  19. Lee C., Yang W., and Parr R.G. // Phys. Rev. B, 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785
  20. Becke A.D. // J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913
  21. Krishnan R., Binkley J.S., Seeger R., and Pople J.A. // J. Chem. Phys., 1980, vol. 72, p. 650. https://doi.org/10.1063/1.438955
  22. Zhurko G.A. and Zhurko D.A. // Chemcraft, Version 1.6. http://www.chemcraftprog.com
  23. Кочубей Д.И., Бабанов Ю.А., Замараев К.И. и др. Рентгеноспектральный метод изучения структуры аморфных тел: EXAFS-спектроскопия, Новосибирск: Наука. Сиб.отд., 1988, 306 с.
  24. Newville M. // J. Synchrotron Rad., 2001, vol. 8, p. 96. https://doi.org/10.1107/S0909049500016290
  25. Zabinski S.I., Rehr J.J., Ankudinov A., and Alber R.C. // Phys. Rev., 1995, vol. 52, p. 2995. https://doi.org/10.1103/PhysRevB.52.2995
  26. Dudek G.O. and Dudek E.P. // J. Am. Chem. Soc., 1964, vol. 86, p. 4283. https://doi.org/10.1021/ja01074a011
  27. Dudek G.O. and Dudek E.P. // J. Chem. Soc. B, 1971, P. 1356. http://dx.doi.org/10.1039/J29710001356
  28. Gilli G. and Gilli P. // J. Mol. Struct., 2000, vol. 552, p. 1. https://doi.org/10.1016/S0022-2860(00)00454-3
  29. Filarowski A., Koll A., and Sobczyk L. // Curr. Org. Chem., 2009, vol. 13, p. 172. https://doi.org/10.2174/138527209787193765
  30. Flores-Leonar M., Esturau-Escofet N., Méndez-Stivalet J.M., et al. // C., J. Mol. Struct., 2011, vol. 1006, p. 600. https://doi.org/10.1016/j.molstruc.2011.10.011
  31. Shimizu, K. Maeshima, H. Yoshida H., et al. // Phys. Chem. Chem. Phys., 2001, vol. 3, p. 862. https://doi.org/10.1039/b007276l
  32. Sano M., Komorita S., and Yamatera H. // Inorg. Chem., 1992, vol. 31, p. 459. https://doi.org/10.1021/ic00029a022
  33. Hinge V.K., Joshi S.K., Shrivastava B.D., et al. // Indian J. Pure Appl. Phys., 2011, vol. 49, p. 168.
  34. Shulman R.G., Yafet T., Eisenberger P., and Blumberg W.E. // Proc. Natl. Acad. Sci. U.S.A., 1976, vol. 73, p. 1384. https://doi.org/0.1073/pnas.73.5.1384
  35. Hahn J.E., Scott R.A., Hodgson K.O., et al. // Chem. Phys. Lett., 1982, vol. 88, p. 595. https://doi.org/10.1016/0009-2614(82)85016-1
  36. Srivastava U.C. and Nigam H.L. // Coord. Chem. Rev., 1973, vol. 9, p. 275. https://doi.org/10.1016/S0010-8545(00)82080-9
  37. Aganval B.K., Bhargava C.B., Vishnoi A.N., and Seth V.P. // J. Phys. Chem. Solids, 1976, vol. 37, p. 725.
  38. Kostroun V.O., Fairchild C.A., Kukkonen C.A., and Wilkins J.W. // Phys. Rev. B, 1976, vol. 13, p. 3268. https://doi.org/10.1103/PhysRevB.13.3268
  39. Rao B.J. and Chetal A.R. // J. Phys. C: Solid State Phys., 1982, vol. 15, p. 6281.
  40. Smith T.A., Berding M., Penner-Hahn J.E., et al. // J. Am. Chem. Soc., 1985, vol. 107, p. 5945.
  41. Blair R.A. and Goddard W.A. // Phys. Rev. B, 1980, vol. 22, p. 2767.
  42. Berry A.J., Hack A.C., Mavrogenes J.A., et al. // Am. Mineral., 2006, vol. 91, p. 1773. https://doi.org/10.2138/am.2006.1940
  43. Харабаев Н.Н. // Коорд. химия, 2017, Т. 43, С. 709. https://doi.org/10.7868/S0132344X17120039
  44. Vlasenko, V.G., Uraev, A.I., and Garnovskii, A.D. // Phys. Scr., 2005, vol. 115, p. 362. https://doi.org/10.1238/Physica.Topical.115a00362
  45. Yalovega G.E., Vlasenko V.G., Uraev A.I., et al. // Rad. Phys. Chem, 2006, 75, p.1905. https://doi.org/10.1016/j.radphyschem.2005.07.051
  46. Yang L., Powell D.R., and Houser R.P. // Dalton Trans., 2007, p. 955. https://doi.org/10.1039/b617136b
  47. Addison A.W., Rao T.N., Reedijk J., et al. // Dalton Trans., 1984, no. 7, p. 1349. https://doi.org/10.1039/DT9840001349

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».