Synthesis and Structure of the (µ2-OP(O)Ph2)-Linked Dimeric Amide Lanthanum Complex {[ CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2 Bearing the Tridentate Heteroscorpionate Ligand. Investigation of the Catalytic Activity in rac-Lactide and ε-Caprolactone Polymerization

Cover Page

Cite item

Full Text

Abstract

The dimeric amide lanthanum complex {[CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2 (PzlMe2 is 3,5-dimethylpyrazole) bearing the N,N,O-tridentate heteroscorpionate ligand is synthesized. As found by X-ray diffraction (XRD) (CIF file CCDC no. 2212274), the complex is binuclear and its lanthanum ions are linked by two bridging monoanionic diphenyl phosphinate ligands. The synthesized lanthanum complex demonstrates a high catalytic activity in the polymerization with ring opening of rac-lactide and ε-caprolactone providing the quantitative conversion of 500 equivalents of the monomer to the polymer at room temperature within 360–720 min for rac-lactide and 10–30 min for ε-caprolactone. The formed polylactides are characterized by the atactic microstructure (Pr = 0.54–0.56) and polydispersity indices (PDI) of 1.6–2.5, whereas for polycaprolactone PDI = 2.1–2.8.

About the authors

N. Yu. Rad’kova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: trif@iomc.ras.ru
Россия, Нижний Новгород

A. V. Cherkasov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: trif@iomc.ras.ru
Россия, Нижний Новгород

A. A. Trifonov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: trif@iomc.ras.ru
Россия, Нижний Новгород; Россия, Москва

References

  1. Hou Z., Nishiura M. // Nat. Chem. 2010. V. 2. P. 257. https://doi.org/10.1038/nchem.595
  2. Trifonov A.A., Lyubov D.M. // Coord. Chem. Rev. 2017. V. 340. P. 10. https://doi.org/10.1016/j.ccr.2016.09.013
  3. Carpentier J.-F., Gromada J., Mortreux A. // Coord. Chem. Rev. 2004. V. 248. P. 397. https://doi.org/10.1016/j.ccr.2004.02.002
  4. Friebe O.N., Obrecht W., Zimmermann M. // Adv. Polym. Sci. 2006, V. 204. P. 1. https://doi.org/10.1007/12_094
  5. Anwander R., Törnroos K.W., Zimmermann M. // Angew. Chem. Int. Ed. 2008. V. 47. P. 775. https://doi.org/10.1002/anie.200703514
  6. Cui D., Liu B., Wang B. et al. // Struct. Bond. 2010. V. 137. P. 49. https://doi.org/10.1007/430.2010.16
  7. Cotton S.A. // Coord. Chem. Rev. 1997. V. 160. P. 93. https://doi.org/10.1016/S0010-8545(96)01340-9
  8. Lyubov D.M., Tolpygin A.O., Trifonov A.A. // Coord. Chem. Rev. 2019. V. 392. P. 83. https://doi.org/10.1016/j.ccr.2019.04.013
  9. Aubrecht K.B., Chang K., Hillmyer M.A., Tolman W.B. // J. Polym. Sci. A. 2001. V. 39. P. 284. https://doi.org/10.1002/1099-0518(20010115)39
  10. Tolpygin A.O., Linnikova O.A., Glukhova T.A. et al. // RSC Adv. 2016. V. 6. P. 17913. https://doi.org/10.1039/C5RA27960G
  11. Nakayama Y., Yasuda H. // J. Organomet. Chem. 2004. V. 689. P. 4489. https://doi.org/10.1016/j.jorganchem.2004.05.056
  12. Piers W.E., Emslie D.J.H. // Coord. Chem. Rev. 2002. V. 233–234. P. 131. https://doi.org/10.1016/S0010-8545(02)00016-4
  13. Howe R.G., Tredget C.S., Lawrence S.C. et al. // Chem. Commun. 2006. P. 223. https://doi.org/10.1039/B513927A
  14. Zeimentz P.M., Arndt S., Elvidge B.R., Okuda J. // Chem. Rev. 2006. V. 106. P. 2404. https://doi.org/10.1021/cr050574s
  15. Hou Z., Luo Y., Li X. // J. Organomet. Chem. 2006. V. 691. P. 3114. https://doi.org/10.1016/j.jorganchem.2006.01.055
  16. Molander G.A., Romero J.A.C. // Chem. Rev. 2002. V. 102. P. 2161. https://doi.org/10.1021/cr010291+
  17. Trifonov A.A., Basalov I.V., Kissel A.A. // Dalton Trans. 2016. V. 45. P. 19172. https://doi.org/10.1039/C6DT03913H
  18. Kissel A.A., Lyubov D.M., Mahrova T.V. et al. // Dalton Trans. 2013. V. 42. P. 9211. https://doi.org/10.1039/C3DT33108C
  19. Khristolyubov D.O., Lyubov D.M., Trifonov A.A. // Russ. Chem. Rev. 2021. V. 90. P. 529. https://doi.org/10.1070/RCR4992
  20. Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  21. Jia Y.Q. // J. Solid State Chem. 1991. V. 95. P. 184. https://doi.org/10.1016/0022-4596(91)90388-x
  22. Morss L.R. // Chem. Rev. 1976. V. 76. P. 827. https://doi.org/10.1021/cr60304a007
  23. Trifonov A.A. // Coord. Chem. Rev. 2010. V. 254. P. 1327. https://doi.org/10.1016/j.ccr.2010.01.008
  24. Otero A., Lara-Sanchez A., Castro-Osma J.A. et al. // New J. Chem. 2015. V. 39. P. 7672. https://doi.org/10.1039/C5NJ00930H
  25. Bochkarev M.N., Zakharov L.N., Kalinina G.S. // Top Organomet. Chem. 1999. P. 285.
  26. Barker J., Kilner M. // Coord. Chem. Rev. 1994. V. 133. P. 219. https://doi.org/10.1016/0010-8545(94)80059-6
  27. Trifonov A.A. // Russ. Chem. Rev. 2007. V. 76. P. 1051. https://doi.org/10.1070/RC2007v076n11ABEH003693
  28. Yap G.P.A. // Acta Crystallogr. C. 2013. V. 69. P. 937. https://doi.org/10.1107/S0108270113019902
  29. Trofimenko S. Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, London: Imperial College Press, 1998.
  30. Reger D.L. // Comments Inorg. Chem. 1999. V. 21. P. 1. https://doi.org/10.1080/02603599908020413
  31. Otero A., Fernandez-Baeza J., Antinolo A. et al. // Dalton Trans. 2004. P. 1499. https://doi.org/10.1039/B401425A
  32. Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 525. https://doi.org/10.1016/j.ccr.2004.05.010
  33. Mou Z., Liu B., Liu X. et al. // Macromolecules. 2014. V. 47. P. 2233. https://doi.org/10.1021/ma500209t
  34. Ballard D.G.H., Coutis A., Holton J. et al. // Chem. Commun. 1978. P. 994. https://doi.org/10.1039/C39780000994
  35. Burger B.J., Thompson M.E., Cotter W.D., Bercaw J.E. // J. Am. Chem. Soc. 1990. V. 112. P. 1566. https://doi.org/10.1021/ja00160a041
  36. Hou Z., Zhang Y., Nishiura M., Wakatsuki Y. // Organometallics. 2003. V. 22. P. 129. https://doi.org/10.1021/om020742w
  37. Li X., Hou Z. // Macromolecules. 2005. V. 38. P. 6767. https://doi.org/10.1021/ma051323o
  38. Otero A., Lara-Sánchez A., Nájera C. et al. // Organometallics. 2012. V. 31. P. 2244. https://doi.org/10.1021/om2011672
  39. Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 663. https://doi.org/10.1016/j.ccr.2004.08.017
  40. Otero A., Fernández-Baeza J., Antinolo A. et al. // J. Am. Chem. Soc. 2004. V. 126. P. 1330. https://doi.org/10.1021/ja0391558
  41. Schädle D., Maichle-Mössmer C., Schädle C., Anwander R. // Chem. Eur. J. 2014. V. 21. P. 662. https://doi.org/10.1002/chem.201404792
  42. Marques N., Sella A., Takats J. // Chem. Rev. 2002. V. 102. P. 2137. https://doi.org/10.1021/cr010327y
  43. Trofimenko S. // Polyhedron. 2004. V. 23. P. 197. https://doi.org/10.1016/j.poly.2003.11.013
  44. Bigmore H.R., Lawrence S.C., Mountford P., Tredget C.S. // Dalton Trans. 2005. P. 635. https://doi.org/10.1039/B413121E
  45. Gibson V.C., Spitzmesser S.K. // Chem. Rev. 2003. V. 103. P. 283. https://doi.org/10.1021/cr980461r
  46. Martínez J., Otero A., Lara-Sánchez A. et al. // Organometallics. 2016. V. 35. P. 1802. https://doi.org/10.1021/acs.organomet.6b00203
  47. Bradley D.C., Ghotra J.S., Hart F.A. // Dalton Trans. 1973. V. 10. P. 1021. https://doi.org/10.1039/DT9730001021
  48. Barakat I., Dubois P., Jerome R., Teyssie P. // J. Polym. Sci. A. 1993. V. 31. P. 505. https://doi.org/10.1002/pola.1993.080310222
  49. APEX3. Madison (WI, USA): Bruker AXS Inc., 2018.
  50. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
  51. Sheldrick G. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  52. Krieck S., Koch A., Hinze K. et al. // Eur. J. Inorg. Chem. 2016. P. 2332. https://doi.org/10.1002/ejic.201501263
  53. Wingerter S., Pfeiffer M., Baier F. et al. // Z. Anorg. Allg. Chem. 2000. V. 626. P. 1121. https://doi.org/10.1002/(SICI)1521-3749(200005)626:5 <1121::AID-ZAAC1121>3.0.CO;2-I
  54. Beswick M.A., Cromhout N.L., Harmer C.N. et al. // Chem. Commun. 1997. P. 583. https://doi.org/10.1039/A608202E
  55. Al-Shboul T.M.A., Volland G., Görls H. et al. // Inorg. Chem. 2012. V. 51. P. 7903. https://doi.org/10.1021/ic300975s
  56. Zhang Z., Xu X., Li W. et al. // Inorg. Chem. 2009. V. 48. P. 5715. https://doi.org/10.1021/ic802177y
  57. Litlabø R., Zimmermann M., Saliu K. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 9560. https://doi.org/10.1002/anie.200803856
  58. Dong X., Robinson J.R. // Chem. Sci. 2020. V. 11. P. 8184. https://doi.org/10.1039/D0SC03507F
  59. Sugiyama H., Korobkov I., Gambarotta S. // Inorg. Chem. 2004. V. 43. P. 5771. https://doi.org/10.1021/ic049820t
  60. Gu X.-Y., Han X.-Z., Yao Y.-M. et al. // J. Organomet. Chem. 2010. V. 695. P. 2726. https://doi.org/10.1016/j.jorganchem.2010.07.037
  61. Zhang J., Qiu J., Yao Y. et al. // Organometallics. 2012. V. 31. P. 3138. https://doi.org/10.1021/om300036a

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (70KB)
3.

Download (423KB)

Copyright (c) 2023 Н.Ю. Радькова, А.В. Черкасов, А.А. Трифонов

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).