ПРОСТРАНСТВЕННАЯ СТРУКТУРА С-КОНЦЕВОГО ДОМЕНА ГЕМОЛИЗИНА II Bacillus cereus СТАБИЛИЗИРУЕТСЯ В СОСТАВЕ ПОЛНОРАЗМЕРНОГО ТОКСИНА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Гемолизин II (HlyII) – один из ключевых патогенных факторов Bacillus cereus, породоразующий токсин с пространственной структурой типа β-баррель, обладающий C-концевым удлинением из 94 a.o., обозначаемый как C-концевой домен HlyII (HlyIICTD). В данной работе проведен сайт-направленный мутагенез аминокислотных остатков, лежащих на поверхности белковой глобулы HlyIICTD. Методом иммуноферментного анализа показано, что моноклональные антитела HlyIIC-16 и HlyIIC-23, полученные против HlyIICTD, взаимодействовали с интактным HlyIICTD гораздо эффективнее, чем с полиоразмерным токсином и химерным белком – HlyIICTD, слитым с SlyD. Антитела HlyIIC-16 и HlyIIC-23 эффективно ингибировали взаимодействие друг друга с иммобилизованным HlyIICTD в иммуноферментном анализе, что свидетельствовало о близости их эпитопов на поверхности молекулы HlyIICTD. Для определения эпитопов HlyIIC-16 и HlyIIC-23 использовали фаговый дисплей, сайт-направленный мутагенев и клонирование генов отдельных частей молекулы HlyIICTD. Пространственное моделирование HlyIICTD, слитого с SlyD, с использованием программы AlphaFold позволило предположить расположение эпитопов HlyIIC-16 и HlyIIC-23 на участке Gly341–Gly364 белка HlyII. Продемонстрировано, что C-концевой домен может одновременно находиться в нескольких структурных состояниях (изоформах). В составе водорастворимой формы мономера полиоразмерного токсина наблюдается переход пространственной структуры HlyIICTD в стабильную форму.

Об авторах

Н. В Руденко

Филиал ФГБУН ГНЦ “Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: nrudkova@mail.ru
Россия, Пущино

Б. С Мельник

Филиал ФГБУН ГНЦ “Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; ФГБУН “Институт белка” РАН (ИБ РАН)

Россия, Пущино; Россия, Пущино

А. П Каратовская

Филиал ФГБУН ГНЦ “Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Россия, Пущино

А. С Нагель

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ РАН) “ФИЦ “Пущинский научный центр биологических исследований” РАН

Россия, Пущино

Ж. И Андреева-Ковалевская

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ РАН) “ФИЦ “Пущинский научный центр биологических исследований” РАН

Россия, Пущино

А. В Замятина

Филиал ФГБУН ГНЦ “Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Россия, Пущино

О. С Ветрова

Филиал ФГБУН ГНЦ “Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Россия, Пущино

А. В Сиунов

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ РАН) “ФИЦ “Пущинский научный центр биологических исследований” РАН

Россия, Пущино

Ф. А Бровко

Филиал ФГБУН ГНЦ “Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Россия, Пущино

А. С Солонин

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ РАН) “ФИЦ “Пущинский научный центр биологических исследований” РАН

Россия, Пущино

Список литературы

  1. Logan N.A. // J. Appl. Microbiol. 2012. V.3. P. 417–429. https://doi.org/10.1111/j.1365-2672.2011.05204.x
  2. Ramarao N., Sanchis V. // Toxins (Basel). 2013. V. 5. P. 1119–1139. https://doi.org/10.3390/toxins5061119
  3. Miles G., Bayley H., Cheley S. // Protein Sci. 2002. V. 11. P. 1813–1824. https://doi.org/doi.org/10.1110/ps.0204002
  4. Rudenko N.V., Nagel A.S., Melnik B.S., Karatovskaya A.P., Vetrova O.S., Zamyatina A.V., Andreeva-Kovalevskaya Z.I., Siunov A.V., Shlyapnikov M.G., Brovko F.A., Solonin A.S. // Int. J. Mol. Sci. 2023. V. 22. P. 16437. https://doi.org/10.3390/ijms242216437
  5. Romero P., Obradovic Z., Li X., Garner E.C., Brown C.J., Dunker A.K. // Proteins. 2001. V. 1. P. 38–48. https://doi.org/10.1002/1097-0134(20010101)42:138::aid-prot503.0.co;2-3
  6. Xue B., Dunbrack R.L., Williams R.W., Dunker A.K., Uversky V.N. // Biochim. Biophys. Acta. 2010. V. 4. P. 996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011
  7. Kaplan A.R., Kaus K., De S., Olson R., Alexandrescu A.T. // Sci. Rep. 2017. V. 1. P. 3277. https://doi.org/10.1038/s41598-017-02917-4
  8. Kaplan A.R., Olson R., Alexandrescu A.T. // Protein Sci. 2021. V. 5. P. 990–1005. https://doi.org/10.1002/pro.4066
  9. Nagibina G.S., Melnik T.N., Glukhova K.A., Uversky V.N., Melnik B.S. // Intrinsic Disorder-Based Design of Stable Globular Proteins // In: Progress in Molecular Biology and Translational Science. 2020. V. 174. P. 157–186. https://doi.org/10.1016/bs.pmbts.2020.05.005
  10. Cardone C., Caseau C.M., Pereira N., Sizun C. // Int. J. Mol. Sci. 2021. V. 4. P. 1537. https://doi.org/10.3390/ijms22041537
  11. Joseph A.P., Srinivasan N., de Brevern A.G. // Amino Acids. 2012. V. 43. P. 1369–1381. https://doi.org/10.1007/s00726-011-1211-9
  12. Schmidpeter P.A., Koch J.R., Schmid F.X. // Biochim. Biophys. Acta. 2015. V. 1850. P. 1973–1982. https://10.1016/j.bbagen.2014.12.019
  13. Morgan A.A., Rubenstein E. // PLoS One. 2013. V. 8. P. e53785. https://doi.org/10.1371/journal.pone.0053785
  14. Vakilian M. // Clin. Immunol. 2022. V. 234. P. 108896. https://doi.org/10.1016/j.clim.2021.108896
  15. Ünal C.M., Steiner M. // Microbiol. Mol. Biol. Rev. 2014. V. 78. P. 544–571. https://doi.org/10.1128/MMBR.00015-14
  16. Ladani S.T., Souffrant M.G., Barman A., Hamelberg D. // Biochim. Biophys. Acta. 2015. V. 1850. P. 1994–2004. https://doi.org/10.1016/j.bbagen.2014.12.023
  17. Bochicchio B., Pepe A. // Chirality. 2011. V. 9. P. 694–702. https://doi.org/10.1002/chir.20979
  18. Rudenko N.V., Karatovskaya A.P., Zamyatina A.V., Siunov A.V., Andreeva-Kovalevskaya Z.I., Nagel A.S., Brovko F.A., Solonin A.S. // Bioorg. Khim. 2020. V. 46. P. 321–326. https://doi.org/10.1134/S1068162020030188
  19. Zamyatina A.V., Rudenko N.V., Karatovskaya A.P., Shepelyakovskaya A.O., Siunov A.V., AndreevaKovalevskaya Z.I., Nagel A.S., Salyamov V.I., Kolesnikov A.S., Brovko F.A., Solonin A.S. // Bioorg. Khim. 2020. V. 6. P. 1214–1220. https://doi.org/10.1134/S1068162020060382
  20. Notredame C., Higgins D., Heringa J. // J. Mol. Biol. 2000. V. 1. P. 205–217. https://doi.org/10.1006/jmbi.2000.4042
  21. Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. // Genome Res. 2004. V. 14. P. 1188–1190. https://doi.org/10.1101/gr.849004
  22. Kaplan A.R., Maciejewski M.W., Olson R., Alexandrescu A.T. // Biomol. NMR Assign. 2014. V. 2. P. 419–423. https://doi.org/10.1007/s12104-013-9530-2
  23. Cheng Y., Oldfield C.J., Meng J., Romero P., Uversky V.N., Dunker A.K. // Biochemistry. 2007. V. 47. P. 13468–13477. https://doi.org/10.1021/bi7012273
  24. Kovermann M., Schmid F.X., Balbach J. // Biol. Chem. 2013. V. 8. P. 965–975. https://doi.org/10.1515/hsz-2013-0137
  25. Abramson J., Adler J., Dunger J. // Nature. 2024. V. 630. P. 493–500. https://doi.org/10.1038/s41586-024-07487-w
  26. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Židek A., Potapenko A. // Nature. 2021. V. 596. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
  27. Varadi M., Anyango S., Deshpande M., Nair S., Natassia C., Yordanova G., Yuan D., Stroe O., Wood G., Laydon A. // Nucleic Acids Res. 2022. V. 50. P. D439–D444. https://doi.org/10.1093/nar/gkab1061
  28. Sambrook J., Russell D.W. // CSH Protoe. 2006. V. 1. P. pdb.prot3468. https://doi.org/10.1101/pdb.prot3468
  29. Taylor N.M., Prokhorov N.S., Guerrero-Ferreira R.C., Shneider M.M., Browning C., Goldie K.N., Stahlberg H., Leiman P.G. // Nature. 2016. V. 7603. P. 346–352. https://doi.org/10.1038/nature17971

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».