The influence of dynamic resistance training on isometric muscle strength, architecture and biomechanical effectiveness of the lower limb extensor muscles when performing vertical jumps from different heights
- Authors: Koryak Y.A.1, Chanafieva K.R.2, Afonichev N.K.2, Prochiy R.R.1, Knutova N.S.1
-
Affiliations:
- Institute of Biomedical Problems of the RAS
- Moscow Aviation Institute (National Research University)
- Issue: Vol 51, No 2 (2025)
- Pages: 66-95
- Section: Articles
- URL: https://bakhtiniada.ru/0131-1646/article/view/304845
- DOI: https://doi.org/10.31857/S0131164625020065
- EDN: https://elibrary.ru/UDOTOB
- ID: 304845
Cite item
Abstract
The purpose of this study was to evaluate changes in early adaptation of muscle architecture, isometric and dynamic leg extensor muscle strength in response to light load training. A group of young novice participants (n = 6, age 21.8 ± 2.3 years, body weight 74.8 ± 9.2 kg, height 1.75 ± 0.08 m) performed low-speed slow concentric and eccentric training for 6 weeks 3 times a week. The workout consisted of concentric calf raises and eccentric lowering for 10 repetitions in 5 sets. In the concentric mode, the subject performed ankle extension to full plantar extension within 2 s, and then in the eccentric mode performed ankle flexion and returned to the original neutral position within 2 s. Before and after the training period, the following were recorded: maximum voluntary contraction (MVC) using a Biodex isokinetic dynamometer (USA), force of voluntary “explosive” contraction, force with an interval of 50 ms from the beginning of the effort (F50, F100, F150, F200, F250 and F300) during voluntary explosive isometric contraction, jump height, relative and absolute power, take-off speed when jumping from a squat jumps (SJ), countermovement jumps (CMJ) and during jumping (DJ) from a height of 20, 40 and 60 cm (DJ20 – DJ60). Kinetic data were collected using a contact platform. The muscle structure of the medial gastrocnemius muscle (MG) was visualized using an Edge ultrasound scanner (USA) at 30% of the distance between the popliteal crease and the center of the lateral malleolus at rest with the ankle joint in neutral position. In this position, longitudinal ultrasound images of the MG were obtained in a relaxed state with determination of the length (Lf) and angle of inclination of the fibers (Θf) relative to the aponeurosis and muscle thickness (Tm). After training, an increase in Tm (+2.7%, p < 0.05) and Θf (+10.4%, p < 0.05), MVC (+17.0%, p < 0.05), average force created in the first 50 ms (+25.0%, p < 0.05) with a slight decrease in Lf (–2.1%). The repulsion speed during DJ20 was 2 times higher than the speed during DJ60 and was higher than at DJ60. The time without support phase during DJ60 was not significantly shorter than during DJ20. The power value varied depending on the jump height, but was significantly higher during DJ20 than during DJ60. The absolute power value during DJ20 was also significantly higher than during DJ60. Our results show that light load dynamic resistance training leads to increases in MVC, explosive voluntary force in the early phase of contraction, Tm and Θf. The latter may indicate increased stiffness of the musculo-tendinous complex, allowing more efficient transmission of force from fibers to the tendons, increasing rapid force production, providing new evidence of peripheral adaptation in just 6 weeks of training.
About the authors
Yu. A. Koryak
Institute of Biomedical Problems of the RAS
Email: yurikoryak@mail.ru
Moscow, Russia
K. R. Chanafieva
Moscow Aviation Institute (National Research University)
Email: yurikoryak@mail.ru
Moscow, Russia
N. K. Afonichev
Moscow Aviation Institute (National Research University)
Email: yurikoryak@mail.ru
Moscow, Russia
R. R. Prochiy
Institute of Biomedical Problems of the RAS
Email: yurikoryak@mail.ru
Moscow, Russia
N. S. Knutova
Institute of Biomedical Problems of the RAS
Author for correspondence.
Email: yurikoryak@mail.ru
Moscow, Russia
References
- LeBlanc A., Gogia P., Schneider V. et al. Calf muscle area and strength changes after five weeks of horizontal bed rest // Am. J. Sport Med. 1988. V. 16. № 6. P. 624.
- Alkner B.A., Tesch P.A. Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise // Eur. J. Appl. Physiol. 2004. V. 93. № 3. P. 294.
- Chopard A., Hillock S., Jasmin B.J. Molecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures // J. Cell. Mol. Med. 2009. V. 13. № 9В. P. 3032.
- Koryak Yu. Influence of simulated microgravity on mechanical properties in the human triceps surae muscle in vivo. I: Effect of 120 days of bedrest without physical training on human muscle musculotendinous stiffness and contractile properties in young women // Eur. J. Appl. Physiol. 2014. V. 114. № 5. P. 1025.
- Koryak Yu. Influence of simulated microgravity on mechanical properties in the human triceps surae muscle in vivo. II. Effect of 120 days of bed-rest with physical training on human muscle contractile properties and musculo-tendinous stiffness in young women // Central Eur. J. Sport Sci. Med. 2015. V. 11. № 3. P. 125.
- Brioche T., Pagano A.F., Py G., Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention // Mol. Aspects Med. 2016. V. 50. P. 56.
- Koryak Yu. Electrically evoked and voluntary properties of the human triceps surae muscle: Effects of long-term spaceflights // Acta Physiol. Pharmacol. Bulg. 2001. V. 26. № 1–2. P. 21.
- Koryak Yu.A. Architectural and functional specifics of the human triceps surae muscle in vivo and its adaptation to microgravity // J. Appl. Physiol. 2019. V. 126. № 4. P. 880.
- Koryak Yu.A. Changes in human skeletal muscle architecture and function induced by extended spaceflight // J. Biomech. 2019. V. 97. P. 109408.
- Ericson M.O., Nisell R., Ekholm J. Quantified electromyography of lower-limb muscles during level walking // Scand. J. Rehabil. Med. 1986. V. 18. № 4. P. 159.
- Willer J., Allen S.J., Burden R.J., Folland J.P. Neuromechanics of middle-distance running fatigue: A key role of the plantarflexors? // Med. Sci. Sports Exerc. 2021. V. 53. № 10. P. 2119.
- Hof A.L., Van Zandwijk J.P., Bobbert M.F. Mechanics of human triceps surae muscle in walking, running and jumping // Acta Physiol. Scand. 2002. V. 174. № 1. P. 17.
- Honeine J.L., Schieppati M., Gage O., Do M.C. The functional role of the triceps surae muscle during human locomotion // PLoS One. 2013. V. 8. № 1. P. e52943.
- Epro G., Mccrum C., Mierau A. et al. Effects of triceps surae muscle strength and tendon stiffness on the reactive dynamic stability and adaptability of older female adults during perturbed walking // J. Appl. Physiol. 2018. V. 124. № 6. P. 1541.
- Weiss L.W., Clark F.C., Howard D.G. Effects of heavy-resistance triceps surae muscle training on strength and muscularity of men and women // Phys. Ther. 1988. V. 68. № 2. P. 208.
- Ferri A., Scaglioni G., Pousson M. et al. Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age // Acta Physiol. Scand. 2003. V. 177. № 1. P. 69.
- Wakahara T., Kanehisa H., Kawakami Y., Fukunaga T. Fascicle behavior of medial gastrocnemius muscle in extended and flexed knee positions // J. Biomech. 2007. V. 40. № 10. P. 2291.
- Maeo S., Huang M., Wu Y. et al. Greater hamstrings muscle hypertrophy but similar damage protection after training at long versus short muscle lengths // Med. Sci. Sports Exerc. 2021. V. 53. № 4. P. 825.
- Gavand S., Isenmann E., Schlöder Y. et al. Low-intensity blood flow restriction calf muscle training leads to similar functional and structural adaptations than conventional low-load strength training: A randomized controlled trial // PLoS One. 2020. V. 15. № 6. P. e0235377.
- Kudo S., Sato T., Miyashita T. Effect of plyometric training on the fascicle length of the gastrocnemius medialis muscle // J. Phys. Ther. Sci. 2020. V. 32. № 4. P. 277.
- American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise // Med. Sci. Sports Exerc. 2011. V. 43. № 7. P. 1334.
- Angleri V., Ugrinowitsch C., Libardi C.A. Crescent pyramid and drop-set systems do not promote greater strength gains, muscle hypertrophy, and changes on muscle architecture compared with traditional resistance training in well-trained men // Eur. J. Appl. Physiol. 2017. V. 117. № 2. P. 359.
- Nobrega S.R., Ugrinowitsch C., Pintanel L. et al. Effect of resistance training to muscle failure versus volitional interruption at high- and low-intensities on muscle mass and strength // J. Strength Cond. Res. 2018. V. 32. № 1. P. 162.
- Schoenfeld B.J., Peterson M.D., Ogborn D. et al. Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men // J. Strength Cond. Res. 2015. V. 29. № 10. P. 2954.
- Jenkins N.D., Housh T.J., Bergstrom H.C. et al. Muscle activation during three sets to failure at 80 vs. 30% 1RM resistance exercise // Eur. J. Appl. Physiol. 2015. V. 115. № 11. P. 2335.
- Aagaard P., Andersen J.L., Dyhre-Poulsen P. et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture // J. Physiol. 2001. V. 534. Pt. 2. P. 613.
- Kanehisa H., Nagareda H., Kawakami Y. et al. Effects of equivolume isometric training programs comprising medium or high resistance on muscle size and strength // Eur. J. Appl. Physiol. 2002. V. 87. № 2. P. 112.
- Blazevich A.J., Gill N.D., Bronks R., Newton R.U. Training-specific muscle architecture adaptation after 5-wk training in athletes // Med. Sci. Sports Exerc. 2003. V. 35. № 12. P. 2013.
- Bamman M.M., Hunter G.R., Steves B.R. et al. Resistance exercise prevents plantar flexor deconditioning during bed rest // Med. Sci. Sports Exerc. 1997. V. 29. № 11. P. 1462.
- Wickiewicz T.L., Roy R.R., Powell P.L. et al. Muscle architecture and force – velocity relationships in humans // J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984. V. 57. № 2. P. 435.
- Blazevich A.J., Giorgi A. Effect of testosterone administration and weight training on muscle architecture // Med. Sci. Sports Exerc. 2001. V. 33. № 10. P. 1688.
- Abe T., Fukashiro S., Harada Y., Kawamoto K. Relationship between sprint performance and muscle fascicle length in female sprinters // J. Physiol. Anthropol. Appl. Human Sci. 2001. V. 20. № 2. P. 141.
- Brechue W.F., Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance // Eur. J. Appl. Physiol. 2002. V. 86. № 4. P. 327.
- Hennessy L., Kilty J. Relationship of the stretch-shortening cycle to sprint performance in trained female athletes // J. Strength Cond. Res. 2001. V. 15. № 3. P. 326.
- Bloch H., Klein C., Luig P., Riepenhof H. Return-to-Competition // Trauma Berufskrankh. 2017. V. 19. № 1. P. 26.
- Steidl-Muller L., Hildebrandt C., Muller E. et al. Limb symmetry index in competitive alpine ski racers: Reference values and injury risk identification according to age-related performance levels // J. Sport Health Sci. 2018. V. 7. № 4. P. 405.
- Klavora P. Vertical-jump tests: A critical review // Strength Cond. J. 2000. V. 22. P. 70.
- Eagles A.N., Sayers M.G.L., Bousson M., Lovell D.I. Current methodologies and implications of phase identification of the vertical jump: A systematic review and meta-analysis // Sports Med. 2015. V. 45. № 9. P. 1311.
- Blazevich A.J., Gill N., Newton R.U. Reliability and validity of two isometric squat tests // J. Strength Cond. Res. 2002. V. 16. № 2. P. 298.
- Blaber A.P., Goswami N., Bondar R.L., Kassam M.S. Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight // Stroke. 2011. V. 42. № 7. P. 1844.
- Macinnis M.J., Mcglory C., Gibala M.J., Phillips S.M. Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two // Appl. Physiol. Nutr. Metab. 2017. V. 42. № 6. P. 563.
- Koryak Yu., Chanafieva K., Afonichev N. et al. [Influence of dynamic resistance training on isometric strength and biomechanical effectiveness of the lower extensor muscles of human limbs when performing vertical jumps from different heigts] / XX Inter. Interdiscip. Congres “Neurosci. for med. and psychol”, Sudak, Crimea, Russia. May 30 – June 10, 2024. Moscow: “MAX Press LLC”, 2024. P. 156.
- Charro M.A., Aoki M.S., Nosaka K. et al. Comparison between multiple sets and half-pyramid resistance exercise bouts for muscle damage profile // Eur. J. Sport Sci. 2012. V. 12. № 3. P. 249.
- Schoenfeld B.J. The mechanisms of muscle hypertrophy and their application to resistance training // J. Strength Cond. Res. 2010. V. 24. № 10. P. 2857.
- Mangine G.T., Hoffman J.R., Gonzalez A.M. et al. The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men // Physiol. Rep. 2015. V. 3. № 8. P. e12472.
- Maeo S., Wu Y., Huang M. et al. Triceps brachii hypertrophy is substantially greater after elbow extension training performed in the overhead versus neutral arm position // Eur. J. Sport Sci. 2023. V. 23. № 7. P. 1240.
- Maganaris C.N., Baltzopoulos V., Sargeant A.J. In vivo measurements of the triceps surae complex architecture in man // J. Physiol. 1998. V. 512. Pt. 2. P. 603.
- Pang B.S.F., Ying M. Sonographic measurement of Achilles tendon in asymptomatic subjects // J. Ultrasound Med. 2006. V. 25. № 10. P. 1291.
- Brown L.E., Weir J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power // J. Exerc. Physiol. Online. 2001. V. 4. P. 1.
- Häkkinen K., Keskinen K.L. Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters // Eur. J. Appl. Physiol. 1989. V. 59. № 3. P. 215.
- Koryak Yu.A. [Neuromuscular adaptation to short-term and long-term human spaceflight / Russian segment] // Eds. Grigoriev A.I., Ushakov I.B. M.: IBMP RAN, 2011. V. 2. P. 93.
- Pain M.T., Hibbs A. Sprint starts and the minimum auditory reaction time // J. Sports Sci. 2007. V. 25. № 1. P. 79.
- Allison G.T. Trunk muscle onset detection technique for EMG signals with ECG artefact // J. Electromyogr. Kinesiol. 2003. V. 13. № 3. P. 209.
- Bobbert M.F., Huijing P., van Ingen Schenau G.J. Drop jump I. The influence of dropping technique on the biomechanics of jumping // Med. Sci. Sports Exerc. 1987. V. 19. № 4. P. 332.
- Bobbert M.F., Huijing P., van Ingen Schenau G.J. Drop jump II. The influence of dropping height on the biomechanics of jumping // Med. Sci. Sports Exerc. 1987. V. 19. № 4. P. 339.
- Earp J.E., Kraemer W.J., Cormie P. et al. Influence of muscle-tendon unit structure on rate of force development during the squat, countermovement, and drop jumps // J. Strength Cond. Res. 2011. V. 25. № 2. P. 340.
- Kenny I.C., Caireallain A.Ȯ., Comyns T.M. Validation of an electronic jump mat to assess stretch-shortening cycle function // J. Strength Cond. Res. 2012. V. 26. № 6. P. 1601.
- Bosco C., Luhtanen P., Komi P.V. A simple method for measurement of mechanical power in jumping // Eur. J. Appl. Physiol. 1983. V. 50. № 2. P. 273.
- Kanehisa H., Muraoka Y., Kawakami Y., Fukunaga T. Fascicle arrangements of vastus lateralis and gastrocnemius muscles in highly trained soccer players and swimmers of both genders // Int. J. Sports Med. 2003. V. 24. № 2. P. 90.
- Kubo K., Kanehisa H., Azuma K. et al. Muscle architectural characteristics in young and elderly men and women // Int. J. Sports Med. 2003. V. 24. № 2. P. 125.
- Finni T., Hodgson J.A., Lai A.M. et al. Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo // J. Appl. Physiol. 2003. V. 95. № 2. P. 829.
- Kawakami Y., Ichinose Y., Fukunaga T. Architectural and functional features of human triceps surae muscles during contraction // J. Appl. Physiol. 1998. V. 85. № 2. P. 398.
- Fukunaga Т., Roy R.R., Shellock F.G. et al. Physiological cross-sectional area of human leg muscles based оn magnetic resonance imaging // J. Orthop. Res. 1992. V. 10. № 6. P. 928.
- Finni T., Ikegaw Sh., Lepola V., Komi P. In vivo behavior of vastus lateralis muscle during dynamic performances // Eur. J. Sport Sci. 2001. V. 1. № 1. P. 1.
- Berg H.E., Tedner B., Tesch P.A. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine // Acta Physiol. Scand. 1993. V. 148. № 4. P. 379.
- Blaber A.P., Goswami N., Bondar R.L., Kassam M.S. Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight // Stroke. 2011. V. 42. № 7. P. 1844.
- Csapo R., Alegre L.M., Baron R. Time kinetics of acute changes in muscle architecture in response to resistance exercise // J. Sci. Med. Sport. 2011. V. 14. № 3. P. 270.
- Ando R., Taniguchi K., Saito A. et al. Validity of fascicle length estimation in the vastus lateralis and vastus intermedius using ultrasonography // J. Electromyog. Kinesiol. 2014. V. 24. № 2. P. 214.
- Blazevich A.J., Gil N.D., Zhou Sh. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo // J. Anat. 2006. V. 209. № 3. P. 289.
- Blazevich A.J., Cannavan D., Coleman D.R., Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles // J. Appl. Physiol. 2007. V. 103. № 5. P. 1565.
- Nimphius S., McGuigan M.R., Newton R.U. Changes in muscle architecture and performance during a competitive season in female softball players // J. Strength Cond. Res. 2012. V. 26. № 10. P. 2655.
- Murray M.P., Guten G.N., Baldwin J.M., Gardner G.M. A comparison of plantar flexion torque with and without the triceps surae // Acta Orthop. Scand. 1976. V. 47. № 1. P. 122.
- Hoffman J.R. Norms for Fitness, Performance, And Health. Human Kinetics, 2006. 221 p.
- Mangine G.T., Hoffman J.R., Vazquez J. et al. Predictors of Fielding Performance in Professional Baseball Players. International // J. Sports Physiol. Perform. 2013. V. 8. № 5. P. 510.
- Cadore E.L., Izquierdo M., Conceiçä M. et al. Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men // Exp. Gerontol. 2012. V. 47. № 6. P. 473.
- Rocha C.S.S., Baroni B.M., Lanferdini F.J. et al. Specificity of strength gains after 12 weeks of isokinetic eccentric training in healthy men // Isokinet. Exerc. Sci. 2011. V. 19. P. 221.
- Baroni B.M., Geremia J.M., Rodrigues R. et al. Muscle architecture adaptations to knee extensor eccentric training: Rectus femoris vs. vastus lateralis // Muscle Nerve. 2013. V. 48. № 4. P. 498.
- Pensini M., Martin A., Maffiuletti N.A. Central versus peripheral adaptations following eccentric resistance training. International // Int. J. Sports Med. 2002. V. 23. № 8. P. 567.
- Symons T.B., Vandervoort A.A., Rice C.L. et al. Effects of maximal isometric and isokinetic resistance training on strength and functional mobility in older adults // J. Gerontol. A Biol. Sci. Med. Sci. 2005. V. 60. № 6. P. 777.
- Folland J.P., Williams A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength // Sports Med. 2007. V. 37. № 2. P. 145.
- Bohm S., Mersmann F., Arampatzis A. Human tendon adaptation in response to mechanical loading: A systematic review and meta-analysis of exercise intervention studies on healthy adults // Sports Med. Open. 2015. V. 1. № 1. P. 7.
- Geremia J.M., Baroni B.M., Bobbert M.F. et al. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans // Eur. J. Appl. Physiol. 2018. V. 118. № 8. P. 1725.
- Langberg H., Ellingsgaard H., Madsen T. et al. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis // Scand. J. Med. Sci. Sports. 2007. V. 17. № 1. P. 61.
- Bojsen-Moller J., Magnusson S.P., Rasmussen L.R. et al. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures // J. Appl. Physiol. 2005. V. 99. № 3. P. 986.
- Baroni B.M., Rodrigues R., Franke R.A. et al. Time course of neuromuscular adaptations to knee extensor eccentric training // Inter. J. Sports Med. 2013. V. 34 № 10. P. 904.
- Magnusson S.P., Aagaard P., Dyhre-Pouelsen P., Kjaer M. Load-displacement properties of the human triceps surae aponeurosis in vivo // J. Physiol. 2001. V. 531. Pt. 1. P. 277.
- Rosager S., Aagaard P., Dyhre-Poulsen P. et al. Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners // Scand. J. Med. Sci. Sports. 2002. V. 12. № 2. P. 90.
- Martyanov V.A. [Rate of using the velocity-strength abilities of neural-muscular apparatus at a voluntary effort] // Fiziol. Zh. SSSR Im. I.M. Sechenova. 1974. V. 60. № 9. P. 1416.
- Martianov V.A., Kopylov Yu.A., Gnutov M.I. [Rate of using possibilities of muscular system at maximum voluntary effort] // Fiziol. Zh. SSSR Im. I.M. Sechenova. 1972. V. 58. № 9. P. 1390.
- Martianov V.A., Koriak Yu.A. [Increase of a voluntary strength effort due to additional afferent effects] // Fiziol. Zh. SSSR Im. I.M. Sechenova. 1973. V. 59. № 11. P. 1756.
- Del Vecchio A., Falla D., Felici F., Farina D. The relative strength of common synaptic input to motor neurons is not a determinant of the maximal rate of force development in humans // J. Appl. Physiol. 2019. V. 127. № 1. P. 205.
- Vila-Cha C., Falla D., Correia M.V., Farina D. Changes in H reflex and V wave following short-term endurance and strength training // J. Appl. Physiol. 2012. V. 112. № 1. P. 54.
- Desmedt J.E., Godaux E. Ballistic contractions in man: Characteristic recruitment pattern of single motor units of the tibialis anterior muscle // J. Physiol. 1977. V. 264. № 3. P. 673.
- Andersen L.L., Aagaard P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development // Eur. J. Appl. Physiol. 2006. V. 96. № 1. P. 46.
- De Ruiter C.J., Kooistra R.D., Paalman M.I., de Haan A. Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles // J. Appl. Physiol. 2004. V. 97. № 5. P. 1693.
- Maffiuletti N.A., Aagaard P., Blazevich A.J. et al. Rate of force development: Physiological and methodological considerations // Eur. J. Appl. Physiol. 2016. V. 116. № 6. P. 1091.
- Dideriksen J.L., Del Vecchio A., Farina D. Neural and muscular determinants of maximal rate of force development // J. Neurophysiol. 2020. V. 123. № 1. P. 149.
- Holtermann A., Roeleveld K., Vereijken B., Etterma G. The effect of rate of force development on maximal force production: acute and training-related aspects // Eur. J. Appl. Physiol. 2007. V. 99. № 6. P. 605.
- Buller A.J., Lewis D.M. The rate of tension development in isometric tetanic contractions of mammalian fast and slow skeletal muscle // J. Physiol. 1965. V. 176. № 3. P. 337.
- Kots Ya.M., Koryak Yu.A. [Duration of the “active state” and the rate of development of tetanic isometric tension of the antagonist muscles of the lower leg] // Theory and Practice of Physical Culture. 1981. № 2. P. 16.
- De Haan A. The influence of stimulation frequency on force-velocity characteristics of in situ rat medial gastrocnemius muscle // Exp. Physiol. 1998. V. 83. № 1. P. 77.
- Deutekom M., Beltman J.G., de Ruiter C.J. et al. No acute effects of short-term creatine supplementation on muscle properties and sprint performance // Eur. J Appl. Physiol. 2000. V. 82. № 3. P. 223.
- Duchateau J., Enoka R.M. Human motor unit recordings: origins and insight into the integrated motor system // Brain Res. 2011. V. 1409. P. 42.
- Stafilidis S., Tilp M. Effects of short duration static stretching on jump performance maximum voluntary contraction, and various mechanica and morphological parameters of the muscle-tendon unit of the lower extremities // Eur. J. Appl. Physiol. 2015. V. 115. № 3. P. 607.
- Fukunaga T., Ichinose Y., Ito M. et al. Determination of fascicle length and pennation angle in a contracting human muscle in vivo // J. Appl. Physiol. 1997. V. 82. № 1. P. 354.
- Ito M., Kawakami Y., Ichinose Y. et al. Nonisometric behavior of fascicles during isometric contraction of a human muscle // J. Appl. Physiol. 1998. V. 85. № 4. P. 1230.
- Alegre L.M., Aznar D., Delgado T. et al. Fuerza y arquitectura muscular en un grupo de estudiantes // Revista de Entrenamiento Deportivo. 2003. V. 17. № 1. P. 23.
- Kearns C.F., Abe T., Brechue W.F. Muscle enlargement in sumo wrestlers includes increased muscle fascicle length // Eur. J. Appl. Physiol, 2000. V. 83. № 4–5. P. 289.
- Kumagai K., Abe T., Brechue W.F. et al. Sprint performance is related to muscle fascicle length in male 100-m sprinters // J. Appl. Physiol. 2000. V. 88. № 3. P. 811.
- Gordon A.M., Huxley A.F., Julian F.J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres // J. Physiol. 1966. V. 184. № 1. P. 170.
- Huijing P.A. Architecture of the human gastrocnemius muscle and some functional consequences // Acta Anat. 1985. V. 123. № 2. P. 101.
- Walker S.M., Schrodt G.R. I-segment length and thin filament period in skeletal muscle fibers of the Rhesus monkey and the human // Anat. Rec. 1974. V. 178. № 1. P. 63.
- Kawakami Y., Abe T., Kuno S., Fukunaga T. Training-induced changes in muscle architecture and specific tension // Eur. J. Appl. Physiol. 1995. V. 72. № 1–2. P. 37.
- Marcora S., Miller M.K. The effect of knee angle on the external validity of isometric measures of lower body neuromuscular function // J. Sports Sci. 2000. V. 18. № 5. P. 313.
- Pijnappels M., van der Burg P.J., Reeves N.D., van Dieen J.H. Identification of elderly fallers by muscle strength measures // Eur. J. Appl. Physiol. 2008. V. 102. № 5. P. 585.
- Rassier D.E. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells // Am. J. Physiol. Cell. Physiol. 2017. V. 313. № 2. P. C134.
- Tillin N.A., Pain M.T.G., Folland J.P. Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts // Proc. R. Soc. B Biol. Sci. 2012. V. 279. № 1736. P. 2106.
- Blazevich A.J., Cannavan D., Hoene S. et al. Changes in muscle force-length properties affect the early rise of force in vivo // Muscle Nerve. 2009. V. 39. № 4. P. 512.
- Lieber R.L., Friden J. Functional and clinical signifivcance of skeletal muscle architecture // Muscle Nerve. 2000. V. 23. № 11. P. 1647.
- Blazevich A.J. Effect of movement pattern and velocity of strength training exercises on training adaptations during concurrent resistance and sprint/jump training. Doctoral dissertation, Southern Cross University, Lismore, NSW. 2001.
- Bobbert M.F., Huijing P.A., van Ingen Schenau G.J. A model of the human triceps surae muscle-tendon complex applied to jumping // J. Biomech. 1986. V. 19. № 11. P. 887.
- Koryak Yu.A. Influence of long-term space flight on mechanical properties of the human triceps surae muscle: electro mechanical delay and musculo-tendinous stiffness // J. Skeletal Muscle. 2017. V. 1. № 1. P. 1.
- Price T.B., Kamen G., Damon B.M. et al. Comparison of MRI with EMG to study muscle activity associated with dynamic plantar flexion // Magn. Reson. Imaging. 2003. V. 21. № 8. P. 853.
- Arampatzis A., Schade F., Walsh M., Bruggemann G. Influence of leg stiffness and its effect on myodynamic jumping performance // J. Electromyogr. Kinesiol. 2001. V. 11. № 5. P. 355.
- Kassiano W., Costa B., Kunevaliki G. et al. Muscle swelling of the triceps surae in response to straight-leg and bent-leg calf raise exercises in young women // J. Strength Cond. Res. 2023. V. 37. № 7. P. e438.
- Kinoshita M., Maeo S., Kobayashi Y. et al. Triceps surae muscle hypertrophy is greater after standing versus seated calf-raise training // Front. Physiol. 2023. V. 14. P. 1272106.
- Kumagai K., Abe T., Brechue W.F. et al. Sprint performance is related to muscle fascicle length in male 100-m sprinters // J. Appl. Physiol. 2000. V. 88. № 3. P. 811.
- Peng H.T. Changes in biomechanical properties during drop jumps of incremental height. // J. Strength Gond. Res. 2011. V. 25. № 9. P. 2510.
- Sousa F., Ishikawa M., Vilas-Boas J.P., Komi P.V. Intensity-and muscle-specific fascicle behavior during human drop jumps // J. Appl. Physiol. 2007. V. 102. № 1. P. 382.
- Farley C.T., Houdijk H.H.P., van Strien C., Louie M. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses // J. Appl. Physiol. 1998. V. 85. № 3. P. 1044.
Supplementary files
