Spatial Auditory Masking Affects the Interhemispheric Asymmetry of Evoked Responses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Interhemispheric asymmetry of electrical brain activity was investigated in the conditions of spatial auditory masking. Moving test signals were presented either in silence or against the background of stationary maskers of various spatial positions. The spatial properties of the stimuli were defined by interaural level differences (ILD). Onset-energy responses (ON-responses), motion-onset responses (MOR) and OFF-responses were analyzed. To compute the topograms and to analyze asymmetry, the amplitudes of each component were averaged over the symmetric electrode clusters in the left and right hemispheres. The ON-responses showed a contralateral dominance of the N1 component in silence, and the degree of contralateral bias increased in masking conditions. Interhemispheric asymmetry of the P2 component was absent in silence. However, the P2 amplitude was higher in the right hemisphere in all combinations of masker and signal. The asymmetry of both deflections was maximal when the masker and the initial portion of the signal were separated by 180 degrees. On the contrary, the interhemispheric asymmetry of the motion-onset response was found only in silence: the cN1 deflection was biased to the side contralateral to the signal. The topography of the OFF-response was symmetrical under all experimental conditions.

About the authors

L. B. Shestopalova

Pavlov Institute of Physiology, RAS

Author for correspondence.
Email: shestopalovalb@infran.ru
Russia, St. Petersburg

E. A. Petropavlovskaia

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
Russia, St. Petersburg

D. A. Salikova

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
Russia, St. Petersburg

V. V. Semenova

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
Russia, St. Petersburg

References

  1. Вайтулевич С.Ф., Петропавловская Е.А., Шестопалова Л.Б., Никитин Н.И. Функциональная межполушарная асимметрия мозга человека и слуховая функция // Физиология человека. 2019. Т. 45. № 2. С. 103. Vaitulevich S.F., Petropavlovskaya E.A., Shestopalova L.B., Nikitin N.I. Functional interhemispheric asymmetry of human brain and audition // Human Physiology. 2019. V. 45. № 2. P. 202.
  2. Teshiba T.M., Ling J., Ruhl D.A. et al. Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning // Cereb. Cortex. 2013. V. 23. № 3. P. 560.
  3. Deouell L.Y., Bentin S., Giard M.H. Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators // Psychophysiology. 1998. V. 35. № 4. P. 355.
  4. Kaiser J., Lutzenberger W., Preissl H. et al. Right-hemisphere dominance for the processing of sound-source lateralization // J. Neurosci. 2000. V. 20. № 17. P. 6631.
  5. Salminen N.H., Tiitinen H., Miettinen I. et al. Asymmetrical representation of auditory space in human cortex // Brain. Res. 2010. V. 1306. P. 93.
  6. Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. № 2. P. 1649.
  7. Schönwiesner M., Krumbholz K., Rübsamen R. et al. Hemispheric asymmetry for auditory processing in the human auditory brainstem, thalamus, and cortex // Cereb. Cortex. 2007. V. 17. № 2. P. 492.
  8. Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for opponent process analysis of sound source location in humans // J. Assoc. Res. Otolaryngol. 2013. V. 14. № 1. P. 83.
  9. Litovsky R.Y. Spatial release from masking // Acoust. Today. 2012. V. 8. № 2. P. 18.
  10. Альтман Я.А., Вайтулевич С.Ф. Слуховые вызванные потенциалы человека и локализация источника звука. СПб.: Наука, 1992. 136 с.
  11. Альтман Я.А. Пространственный слух. СПб.: Институт физиологии им. И.П. Павлова РАН, 2011. 311 с.
  12. Bibee J.M., Stecker G.C. Spectrotemporal weighting of binaural cues: Effects of a diotic interferer on discrimination of dynamic interaural differences // J. Acoust. Soc. Am. 2016. V. 140. № 4. P. 2584.
  13. Bőhm T.M., Shestopalova L., Bendixen A. et al. The role of perceived source location in auditory stream segregation: Separation affects sound organization, common fate does not // Learn. Percept. 2013. V. 5. № 2. P. 55.
  14. Shestopalova L., Bőhm T.M., Bendixen A. et al. Do audio-visual motion cues promote segregation of auditory streams? // Front. Neurosci. 2014. V. 8. P. 64.
  15. Pastore M.T., Yost W.A. Spatial Release from Masking with a Moving Target // Front. Psychol. 2017. V. 8. P. 2238.
  16. Варфоломеев А.Л., Старостина Л.В. Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа // Рос. физиол. журн. им. И.М. Сеченова. 2006. Т. 92. № 9. С. 1046.
  17. Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes // Neuropsychologia. 2009. V. 47. № 12. P. 2625.
  18. Getzmann S., Lewald J. Cortical processing of change in sound location: smooth motion versus discontinuous displacement // Brain Res. 2012. V. 1466. P. 119.
  19. Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Brain oscillations evoked by sound motion // Brain Res. 2021. V. 1752. P. 147232.
  20. Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А. и др. Латентность вызванного потенциала как показатель интегрирования акустической информации о движении звука // Физиология человека. 2022. Т. 48. № 4. С. 57. Semenova V.V., Shestopalova L.B., Petropavlovskaia E.A. et al. Latency of motion onset response as an integrative measure of processing sound movement // Human Physiology. 2022. V. 48. № 4. P. 401.
  21. Доброхотова Т.А., Брагина Н.Н. Левши. М.: Книга, 1994. 232 с.
  22. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А. и др. Слуховые вызванные потенциалы человека в условиях пространственной маскировки // Физиология человека. 2022. Т. 48. № 6. С. 32. Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A. et al. Event-related potentials in conditions of auditory spatial masking in humans // Human Physiology. 2022. V. 48. № 6. P. 633.
  23. Delorme A., Sejnowski T., Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis // NeuroImage. 2007. V. 34. № 4. P. 1443.
  24. Fujiki N., Riederer K.A.J., Jousmäki V. et al. Human cortical representation of virtual auditory space: differences between sound azimuth and elevation // Eur. J. Neurosci. 2002. V. 16. № 11. P. 2207.
  25. Palomäki K., Alku P., Mäkinen V. et al. Sound localization in the human brain: neuromagnetic observations // Neuroreport. 2000. V. 11. № 7. P. 1535.
  26. Palomäki K.J., Tiitinen H., Mäkinen V. et al. Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques // Brain Res. Cogn. Brain Res. 2005. V. 24. № 3. P. 364.
  27. Getzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages // Eur. J. Neurosci. 2011. V. 33. № 7. P. 1339.
  28. Somervail R., Zhang F., Novembre G. et al. Waves of Change: Brain Sensitivity to Differential, not Absolute, Stimulus Intensity is Conserved Across Humans and Rats // Cereb. Cortex. 2021. V. 31. № 2. P. 949.
  29. Lewald J., Getzmann S. Electrophysiological correlates of cocktail-party listening // Behav. Brain Res. 2015. V. 292. P. 157.
  30. Tanaka H., Hachisuka K., Ogata H. Sound lateralisation in patients with left or right cerebral hemispheric lesions: relation with unilateral visuo-spatial neglect // J. Neurol. Neurosurg. Psychiatry. 1999. V. 67. № 4. P. 481.
  31. Zatorre R.J., Penhune V.B. Spatial localization after excision of human auditory cortex // J. Neurosci. 2001. V. 21. № 16. P. 6321.
  32. Spierer L., Bellmann-Thiran A., Maeder Ph. et al. Hemispheric competence for auditory spatial representation // Brain. 2009. V. 132. Pt. 7. P. 1953.
  33. Zatorre R.J., Mondor T.A., Evans A.C. Auditory attention to space and frequency activates similar cerebral systems // NeuroImage. 1999. V. 10. № 5. P. 544.
  34. Brunetti M., Belardinelli P., Caulo M. et al. Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study // Hum. Brain Mapp. 2005. V. 26. № 4. P. 251.
  35. Tiitinen H., Salminen N.H., Palomäki K.J. et al. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex // Neurosci. Lett. 2006. V. 396. № 1. P. 17.
  36. Petit L., Simon G., Joliot M. et al. Right hemisphere dominance for auditory attention and its modulation by eye position: an event-related fMRI study // Restor. Neurol. Neurosci. 2007. V. 25. № 3–4. P. 211.
  37. Richter N., Schröger E., Rübsamen R. Hemispheric specialization during discrimination of sound sources reflected by MMN // Neuropsychologia. 2009. V. 47. № 12. P. 2652.
  38. Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion // Hear. Res. 2010. V. 259. № 1–2. P. 44.
  39. Abeles M., Goldstein M.H., Jr. Responses of single units in the primary auditory cortex of the cat to tones and to tone pairs // Brain Res. 1972. V. 42. № 2. P. 337.
  40. He J., Hashikawa T., Ojima H., Kinouchi Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex // J. Neurosci. 1997. V. 17. № 7. P. 2615.
  41. Recanzone G.H. Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys // Hear. Res. 2000. V. 150. № 1. P. 104.
  42. Phillips D.P., Hall S.E., Boehnke S.E. Central auditory onset responses, and temporal asymmetries in auditory perception // Hear. Res. 2002. V. 167. № 1–2. P. 192.
  43. Szabó B.T., Denham S.L., Winkler I. Computational Models of Auditory Scene Analysis: A Review // Front. Neurosci. 2016. V. 10. P. 524.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (365KB)
3.

Download (235KB)
4.

Download (913KB)
5.

Download (862KB)
6.

Download (663KB)

Copyright (c) 2023 Л.Б. Шестопалова, Е.А. Петропавловская, Д.А. Саликова, В.В. Семенова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».