INTEGRAL ASSESSMENT OF WALL THICKNESS ECCENTRICITY IN SMALL-DIAMETER PIPES USING AN ULTRASONIC METHOD
- Autores: Muraveva O.V.1,2, Belosludtsev K.Y.1, Vladykin A.L.1, Stepanova E.A.1
-
Afiliações:
- Kalashnikov Izhevsk State Technical University
- Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences
- Edição: Nº 8 (2025)
- Páginas: 28-41
- Seção: Acoustic methods
- URL: https://bakhtiniada.ru/0130-3082/article/view/299520
- DOI: https://doi.org/10.31857/S0130308225080038
- ID: 299520
Citar
Resumo
Deviation from the nominal wall thickness of a pipe—both during manufacturing and in operation—is a critical factor affecting the durability of equipment. This study proposes a model of acoustic wave propagation across a pipe cross-section with eccentricity, which forms the theoretical basis for a method of integral assessment of wall thickness non-uniformity in small-diameter pipes. The method is implemented using a specialized flexible piezoelectric transducer based on polyvinylidene fluoride (PVDF) on several samples of seamless pipes with varying thicknesses, and is validated by the results of local ultrasonic thickness measurements
Sobre autores
Olga Muraveva
Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences
Email: olgak166@mail.ru
Rússia, 426069 Izhevsk, Studencheskaya str., 7;
426067 Izhevsk, Tatiana Baramzina str., 34
Konstantin Belosludtsev
Kalashnikov Izhevsk State Technical University
Email: pmkk@istu.ru
Rússia, 426069 Izhevsk, Studencheskaya str., 7
Alexey Vladykin
Kalashnikov Izhevsk State Technical University
Autor responsável pela correspondência
Email: vladykin-ndt@mail.ru
ORCID ID: 0009-0006-1813-2011
Rússia, 426069 Izhevsk, Studencheskaya str., 7
Elena Stepanova
Kalashnikov Izhevsk State Technical University
Email: seaka00@mail.ru
Código SPIN: 9289-3724
Rússia, 426069 Izhevsk, Studencheskaya str., 7
Bibliografia
- Nasybullin A.V., Dyakonov A.A., Sayakhov V.A., Denisov O.V., Shaykhrazieva L.R., Shaydullin L.K. Study of materials and manufacturing technology of oilfield well pumping equipment // STIN. 2024. No. 2. P. 16—20. EDN AWSCPG.
- Benyakovsky M.A., Bogoyavlensky K.N., Vitkin A.I., Garber E.A., Zyuzin V.I., Tretyakov A.V. Rolling production technology / A reference book in 2 books. Moscow: Metallurgy, 1991. 862 p.
- Druyan V.M., Krupman Yu.G., Lyakhovsky L.S. Production of steel pipes. Moscow: Metallurgy, 1989. 398 p.
- Plotnikov A.L., Kao S.C., Kursin O.A., Egorov N.I., Fam S.B., Li S.V. Investigation of finishing abrasive treatment of machine parts made of low-carbon steels // Izvestia Volgogradskogo gosudarstvennogo tehniceskogo universiteta. 2016. No. 8 (187). P. 38—41. EDN WZQJQL.
- Shatalov R.L., Zagoskin E.E., Medvedev V.A. Effects of Uneven Temperature Variations on the Mechanical Properties of a Rolling and Pressing Line Deforming Tool // Metallurgist. 2023. V. 67. No. 7—8. P. 1086—1092. doi: 10.1007/s11015-023-01600-6. EDN JMQPIA.
- Murav’ev V.V., Khomutov A.S., Murav’eva O.V., Stepanova E.A., Popova V.D. Formation of Residual Stresses in the Cylinders of Deep-Rod Pumps after Manufacturing Operations // Vestnik IzhGTU Imeni M.T. Kalashnikova. 2024. V. 27. No. 2. P. 87—96. doi: 10.22213/2413-1172-2024-2-87-96. EDN JUTAFX.
- Strizhak V.A., Khasanov R.R., Khomutov A.S., Torkhov K.A., Pushin P.N. Waveguide Acoustic Control of Pipes — Billets of Deep Rod Pumps // Vestnik IzhGTU Imeni M.T. Kalashnikova. 2024. V. 27. No. 3. P. 86—100. doi: 10.22213/2413-1172-2024-3-86-100. EDN PKTDNX.
- Khomutov A.S., Murav’ev V.V. Flaw detection in the deep-rod pump cylinder after ion nitriding // Intellektual’nye sistemy v proizvodstve. 2023. V. 21. No. 2. P. 16—26. doi: 10.22213/2410-9304-2023-2-16-26. EDN TIHDED.
- Leun E.V. Improvement of methods and means of control of deviations from straightness by using acousto-optic heterodyne laser measuring systems // Omskiy nauchnyy vestnik. 2019. No. 4 (166). P. 71—77. doi: 10.25206/1813-8225-2019-166-71-77. EDN LVPEMF.
- Han Ya, Fan Ju, Yang X. A structured light vision sensor for on-line weld bead measurement and weld quality inspection // The International Journal of Advanced Manufacturing Technology. 2020. V. 106. No. 5. P. 2065—2078. doi: 10.1007/s00170-019-04450-2. EDN UITXHJ.
- Mikhaylov I.V., Aliagaev A.R. Analysis and prospects for the application of automated technologies and laser triangulation for visual inspection of weld quality in the production of large-diameter longitudinally welded pipes // Inzhenernyj vestnik Dona. 2024. No. 7 (115). P. 1—14. EDN UTBJYZ.
- Bellis M. 3D imaging for nondestructive testing // V mire nerazrushayushchego kontrolya. 2019. V. 22. No. 4. P. 26—30. doi: 10.12737/article_5dcc068183a300.21649852. EDN DKGCZC.
- Stepanov V.A., Moos E.N., Shadrin M.V., Solovyov D.A., Ivanova I.V. A triangulation sensor for measuring the displacements and high-precision monitoring of the production performance // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2020. V. 13. No. 1. P. 54—65. doi: 10.18721/JPM.13105. EDN BTAWTZ.
- Optical thickness measurement method directly in the rolling mill // Chernye Metally. 2015. No. 12 (1008). P. 27—28. EDN WERAMJ.
- Wasif R., Tokhi M. O., Shirkoohi G. H., Marks R., Rudlin J. Development of Permanently Installed Magnetic Eddy Current Sensor for Corrosion Monitoring of Ferromagnetic Pipelines // Applied Sciences. 2022. V. 12. P. 1037. doi: 10.3390/app12031037
- Xie L., Gao B., Tian G. Y., Tan J., Feng B., Yin Y. Coupling pulse eddy current sensor for deeper defects NDT // Sensors and Actuators A: Physical. 2019. V. 293. No. 1. P. 189—199. doi: 10.1016/j.sna.2019.03.029
- Sun H., Shi Y., Zhang W. RFEC Based Oil Downhole Metal Pipe Thickness Measurement // Journal of Nondestructive Evaluation. 2021. V. 40. P. 35. doi: 10.1007/s10921-021-00766-w.
- Nash C., Karve P., Adams D. Diagnosing nuclear power plant pipe wall thinning due to flow accelerated corrosion using a passive, thermal non-destructive evaluation method: Feasibility assessment via numerical experiments // Nuclear Engineering and Design. 2022. V. 386. Р. 111542. doi: 10.1016/j.nucengdes.2021.111542
- Yang R., He Y., Zhang H., Huang S. Through coating imaging and nondestructive visualization evaluation of early marine corrosion using electromagnetic induction thermography // Ocean Engineering. 2018. V. 147. No. 1. P. 277—288. doi: 10.1016/j.oceaneng.2017.09.023.
- Liu H., Zhang L., Liu H. F., Chen S., Wang S., Wong Z. Z., Yao K. High-frequency ultrasonic methods for determining corrosion layer thickness of hollow metallic components // Ultrasonics. 2018. V. 89. P. 166—172. doi: 10.1016/j.ultras.2018.05.006
- Rahim M., Arai Y., Araki W. Effects of thickness variation due to presence of roller wake on the thickness measurement using laser ultrasonic technique // The International Journal of Advanced Manufacturing Technology. 2024. V. 132. P. 339—348. doi: 10.1007/s00170-024-13397-y
- Zarubin V.P., Bychkov A.S., Karabutov A.A., Simonova V.A., Kudinov I.A., Cherepetskaya E.B. Real-time laser ultrasound tomography for profilometry of solids // Moscow University Physics Bulletin. 2018. V. 73. No. 1. P. 75—82. doi: 10.3103/S0027134918010150. EDN IPCKRR.
- Liu Y., Yang S., Gan C. A novel laser ultrasonic thickness measurement method for metal plate based on spectral analysis // Proceedings of URAI. 2015. P. 324—329. doi: 10.1109/URAI.2015.7358964
- Klyuev V.V., Artem’ev B.V., Artem’ev I.B., Klyuev Z.V.. X-ray thickness measurement in the rolling production of non-ferrous metals // Izvestiya vysshih uchebnyh zavedeniy. Mashinostroenie. 2015. No. 7 (664). P. 67—78. EDN UARLQF.
- Raman Singh, Baldev Raj, U. Kamachi Mudali, Prabhakar Singh Non-Destructive Evaluation of Corrosion and Corrosion-assisted Cracking. The American Ceramic Society, 2019. 448 p.
- Suchkov G.M., Migushchenko R.P., Kropachek O.Y., Plesnetsov S.Y., Bilyk Z.V., Boussi S., Horoshailo Y.E., Efimenko S.A.. Nonсontact Spectral Express Method for Detecting Corrosion Damage to Metal Products // Defectoskopiya. 2020. No. 1. P. 14—21. doi: 10.1134/S1061830920010118. EDN QDHGSX.
- Muraveva O.V., Muraviev V.V., Sintsov M.A., Volkova L.V. Detecting Flaws in Pumping-Compressor Pipe Couplings by Magnetic, Eddy Current, and Ultrasonic Multiple-Shadow Testing Methods // Defectoskopiya. 2022. No. 4. P. 14—25. doi: 10.1134/S1061830922040088. EDN AKWOHF.
- Ding C., Tang D., Su R., He Y., Wang Q., Peng Y., Tang Y., Li M. The Research and Application of Wheeled Dry-Coupling Ultrasonic Technology in Steel Plate Thickness Measurement // Russian Journal of Nondestructive Testing. 2023. V. 59. P. 753—766. doi: 10.1134/S1061830923600168
- Anufriyev B.F., Ableev A.N., Martinenko S.P., Martinenko S.S. Ultrasonic system for monitoring wall thickness fnd corrosion damage of thin-walled tubes // Datchiki i Systemi. 2021. No 5 (258). P. 10—14. doi: 10.25728/datsys.2021.5.2. EDN YENNYS.
- Liu T., Pei C., Cai R., Li Y., Chen Z. A Flexible and Noncontact Guided-wave Transducer based on Coils-only EMAT for Pipe Inspection // Sensors and Actuators A: Physical. 2020. V. 314. Р. 112213. doi: 10.1016/j.sna.2020.112213
- Liu Y., Feng X. A novel methodology based on the reflected L(0,1) guided wave for quantitative detection of corrosion-induced wall thickness loss in continuous pipes // Journal of Civil Structural Health Monitoring. 2024. V. 14. P. 67—82. doi: 10.1007/s13349-023-00699-0
- Ze-Yu Dong, Hai-Tao Wang, Xin Li, Jun Xu, Xian-Ming Yang, Meng-Hao Jiang Research for Evaluation Method Based on Lamb Waves for Thickness of Ship Deck Beams // Russian Journal of Nondestructive Testing Defectoskopiya. 2020. No. 7. P. 10—20. doi: 10.1134/S1061830920070049
- Tolipov K.B. Measuring of the thickness of thin films with the use of harmonic antisymmetric Lamb waves // Measurement Techniques. 2018. No. 6. P. 639—642. doi: 10.1007/s11018-018-1477-3. EDN GOHJKW.
- Trushkevych O., Dixon S., Tabatabaeipour M., Potter M. D. G., MacLeod C., Dobie G., Edwards R. Calibration-free SH guided wave analysis for screening of wall thickness in steel with varying properties // NDT & E International. 2023. V. 135. Р. 102789. doi: 10.1016/j.ndteint.2023.102789
- Terentyev D.A. Integral thickness gauging // V mire nerazrushayushchego kontrolya. 2014. No. 1 (63). P. 59—62. EDN RYXGRR.
- Muravieva O.V., Muraviev V.V., Shikharev P.A., Belosludtsev K.Yu. Evaluation of the non-uniformity of acoustic and elastic properties of compression coil springs // Defectoskopiya. 2025. No. 4. P. 29—41. doi: 10.31857/S0130308225040038. EDN JWZQHA.
Arquivos suplementares
