THREE-DIMENSIONAL MODELLING OF VISIBLE RADIATION PROPAGATION THROUGH CRYOGENIC TARGET WITH HARMONIC PERTURBATIONS OF SHELL AND SOLID FUEL LAYER
- Authors: Zarubina E.Y.1,2, Rogozhina M.A.1, Chugrov I.A.1
-
Affiliations:
- The Russian Federal Nuclear Center—All-Russian Scientific Research Institute of Experimental Physics (RFNC—VNIIEF)
- MSU named after M.V. Lomonosov, MSU Branch in Sarov
- Issue: No 11 (2025)
- Pages: 44-53
- Section: Comprehensive application of non-destructive testing methods
- URL: https://bakhtiniada.ru/0130-3082/article/view/303978
- DOI: https://doi.org/10.31857/S0130308225110041
- ID: 303978
Cite item
Abstract
An indirect-drive cryogenic target is a hollow spherical shell-capsule with solid layer of hydrogen isotopes (fuel) on its inner surface, located in a box-converter which in turn is mounted in a cryostat to provide for operation at a cryogenic temperature. Before placing a target in an ignition experiment at a megajoule energy level facility a thorough characterization of all component elements of the target and of the finished target must be completed. This paper describes three-dimensional modelling of a visible radiation beam propagation through a cryogenic target to study the robustness of optical shadow method for characterization of a solid fuel layer in an optically transparent shell in the presence of harmonic perturbations of various orders and amplitudes of the shell and fuel layer surfaces, as well as under non-ideal experimental conditions
About the authors
Elena Yuryevna Zarubina
The Russian Federal Nuclear Center—All-Russian Scientific Research Institute of Experimental Physics (RFNC—VNIIEF);MSU named after M.V. Lomonosov, MSU Branch in Sarov
Author for correspondence.
Email: zarubinaelena2@yandex.ru
Russian Federation, 607188 Sarov, Mira Street, 37;
607328 Sarov, Parkovaya str., 8
Marina Anatolyevna Rogozhina
The Russian Federal Nuclear Center—All-Russian Scientific Research Institute of Experimental Physics (RFNC—VNIIEF)
Email: rogozhina.marina.a@gmail.com
Russian Federation, 607188 Sarov, Mira Street, 37
Ivan Alexandrovich Chugrov
The Russian Federal Nuclear Center—All-Russian Scientific Research Institute of Experimental Physics (RFNC—VNIIEF)
Email: cahbi4var@mail.ru
Russian Federation, 607188 Sarov, Mira Street, 37
References
- Ilgisonis V. Fusion research as an essential component of the technological platform of energy security // Energy Policy. 2023. V. 2. No. 180. doi: 10.46920/2409-5516_2023_2180_12
- Ilgisonis V.I., Ilyin K.I., Novikov S.G., Olenin Yu.A. On the Program of Russian Research in the Field of Controlled Thermonuclear Fusion and Plasma Technologies // Plasma Physics. 2021. V. 47. No. 11. P. 963—969. doi: 10.31857/S0367292121110172
- Averin M.S., Baranova A.S., Busalov A.A., Gnutov A.S., Ermakova I.Yu., Lyapin V.V. Algorithm for transferring a surface mesh in preparing computational meshes for thin-walled structures / Youth in Science: collection of reports from the XXI scientific and technical conference, 2024.
- Haan S.W., Lindl J.D., Callahan D.A., Clark D.S. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility // Physics of Plasmas (1994-present). 2011. V. 18. P. 051001. doi: 10.1063/1.3592169
- Harding D.R., Wittman M.D., Edgell D.H. Considerations and Requirements for Providing Cryogenic Targets for Direct-Drive Inertial Fusion Implosions at the National Ignition Facility // Fusion Science and Technology. 2013. V. 63. No. 2. P. 95—105.
- Hamza A.V., Nikroo A., Alger E., Antipa N., Atherton L.J., Barker D., Baxamusa S., Bhandarkar S., Biesiada T., Buice E., Carr E., Castro C., Choate C., Conder A., Crippen J., Dylla-Spears R., Dzenitis E., Eddinger S., Emerich M., Fair J., Farrell M., Felker S., Florio J., Forsman A., Giraldez E., Hein N., Hoover D., Horner J., Huang H., Kozioziemski B., Kroll J., Lawson B., Letts S.A., Lord D., Mapoles E., Mauldin M., Miller P., Montesanti R., Moreno K., Parham T., Nathan B., ReynoldsJ., Sater J., Segraves K., Seugling R., Stadermann M., Strauser R., Stephens R., Suratwala T.I., Swisher M., Taylor J.S., Wallace R., Wegner P., Wilkens H., Yoxalla B. Target development for the National Ignition Campaign // Fusion science and technology. 2016. V. 69. P. 395—406.
- Harding D.R., Ulreich J., Wittman M.D., Chapman R., Taylor C., Taylor R., Redden N.P. , Lambropoulos J.C., Gram R.Q., Bonino M.J., Turner D.W. Requirements and Capabilities for Fielding Cryogenic DT-Containing Fill-Tube Targets for Direct-Drive Experiments on OMEGA / Fusion Science and Technology, 2017.
- Swadling G.F. , Farmer W.A., Chen H., Aybar N., Rubery M.S., Schneider M.B., Liedahl D.A., Lemos N.C., Tubman E., Ross J.S., Hinkel D.E., Landen O.L., Rosen M.D., Rogers S., Newman K., Yanagisawa D., Roskopf N.,Vonhof S., Aghaian L., Mauldin M., Reichelt B.L., Kunimune J. Resolving discrepancies in bang-time predictions for ICF experiments on the NIF: Insights from the Build-A-Hohlraum Campaign // Work in progress. 2025. V. 17. No. 1.
- Abu-Shawareb H., The Indirect Drive ICF Collaboration et. al. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment // Phys. Rev. Lett. 2024. V. 132. P. 065102. https://doi.org/10.1103/PhysRevLett.132.065102.
- LMJ & PETAL Status and first experiments // Journal of Physics: Conference Series 717. 2016. P. 012084. doi: 10.1088/1742-6596/717/1/012084
- Miquel J.-L., Lion C., Vivini P. The Laser Mega-Joule : LMJ & PETAL status and Program Overview // Journal of Physics: Conference Series 688. 2016. P. 012067. doi: 10.1088/1742-6596/688/1/012067
- Shaoen Jiang Feng Wang, Yongkun Ding, Shenye Liu, Jiamin Yang, Sanwei Li, Tianxuan Huang, Zhurong Cao, Zhenghua Yang, Xin Hu, Wenyong Miao, Jiyan Zhang, Zhebin Wang, Guohong Yang, Rongqing Yi, Qi Tang, Longyu Kuang, Zhichao Li, Dong Yang, Baohan Zhang. Experimental Progress of Inertial Confinement Fusion Based on ShenGuang III Laser Facility in China /Nucl. Fusion. 2018. doi: 10.1088/1741-4326/aabdb6
- https://lasers.llnl.gov/science/achieving-fusion-ignition. Дата обращения 29.04.25 г.
- Wittman M.D., Bredesen D. Modeling for Direct Drive Fusion Implosions: Cryogenic Target Filling at Arbitrary Viewing Angles and Yield Prediction. Simon Narang, Sutherland High School, Pittsford, New York. November 2019.
- Harding D.R., Wittman M.D., Redden N.P., Edgell D.H., Ulreich J. Comparison of Shadowgraphy and X-Ray Phase Contrast Methods for Characterizing a DT Ice Layer in an Inertial Confinement Fusion Target // Fusion Science and Technology. 2020. doi: 10.1080/15361055.2020.1812990
- Tianliang Yan, Kai Wang, Zhongming Zang, An Lu, Xiaobo Hu, Nan Chen, Huxiang Zhang, Chong Liu, Dong Liu. Compact, snapshot and triple-wavelength system for ICF target ice-layer refractive index and thickness measurement // Optics and Laser Technology. 2021. V. 134. P. 106595.
- Lamy F., Voisin Y., Diou A., Martin M., Jeannot L., Pascal G., Hermerel C. A Model to Characterize the D-T Layer of ICF Targets by Backlit Optical Shadowgraphy // Fusion Science and Technology. 2005. V. 48. No. 3. P. 1307—1319.
- Zarubina E.Yu., Rogozhina M.A., and Chugrov I.A. Creation of the Indirect-Drive Cryogenic Target with the Solid Deuterium Layer // Moscow University Physics Bulletin. 2024. V. 79. No. 1. P. 25—38.
- Zarubina E.Yu., Rogozhina M.A., Chugrov I.A. Characterization of Hydrogen Isotopes Layer Parameters in Indirect-Drive Cryogenic Target for Laser Thermonuclear Fusion // FIZMAT. 2024. V. 2. No. 2. P. 134—154.
- Zarubina E.Yu., Rogozhina M.A. Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion // Physics of Atomic Nuclei. 2022. V. 5. No. 10. P. 1638—1641. doi: 10.1134/S1063778822100659
- Alabuzhev A.A., Belozerova T.S., Henner V.K. Methods of Mathematical Physics. Part II. Special Functions. Legendre Polynomials / Textbook-method manual. Perm: Perm. University, 2009. 76 p.
- Born M., Wolf E. Principles of optics. 2nd ed. Translation from English, Main Editorial Board of Physics and Mathematics Literature. Nauka Publishing House, 1973.
- Keisuke Iwano, Jiaqi Zhang, Akifumi Iwamoto, Yuki Iwasa, Keisuke Shigemori, Masanori Hara, Yuji Hatano, Takayoshi Norimatsu & Kohei Yamanoi. Refractive index measurements of solid deuterium–tritium // Scientifc Reports. 2022. No. 12. P. 2223. doi: 10.1038/s41598-022-06298-1.
Supplementary files


