About some exact and approximate formulas for calculating the Rayleigh wave velocity
- Authors: Golubev E.V.1
-
Affiliations:
- South Ural State University
- Issue: No 8 (2025)
- Pages: 16-27
- Section: Acoustic methods
- URL: https://bakhtiniada.ru/0130-3082/article/view/283467
- DOI: https://doi.org/10.31857/S0130308225080029
- ID: 283467
Cite item
Abstract
A generalization of the analytical expression for the Rayleigh wave velocity in algebraic form and formulas with hyperbolic functions that do not contain cubic radicals are obtained. Their application is considered using the example of determining the deduction in problems of excitation and diffraction of surface acoustic waves in a homogeneous isotropic elastic half-space, allowing solutions for fields of deformations and stresses in the form of quadratures. The results obtained can help in obtaining analytical expressions, as well as approximate formulas, and reduce the calculation time at the stage of numerically solving problems of diffraction and excitation of acoustic waves. Approximate formulas of L. Bergmann, E.G. Nesvijski, P.C. Vinh and P.G. Malischewsky are also considered and their more optimal variants are proposed.
About the authors
Eugene V. Golubev
South Ural State University
Author for correspondence.
Email: golubevev@susu.ru
ORCID iD: 0000-0002-6641-0702
SPIN-code: 5384-6891
Scopus Author ID: 7004245154
ResearcherId: O-2602-2014
Cand. Sc. (Physics and Mathematics), Associate Professor, Optoinformatics Department, South Ural State University, Chelyabinsk, Russian Federation
Russian Federation, 454080 Chelyabinsk, Lenin pr-t, 76References
- Rayleigh L. On Waves Propagated along the Plane Surface of an Elastic Solid // Proceedings of the London Mathematical Society. 1885. V. s1—17. Is. 1. P. 4—11. doi: 10.1112/plms/s1-17.1.4
- Husson D., Bennett S.D., Kino G.S. Rayleigh Wave Measurement of Surface Stresses in Stainless Steel Piping / In: C.O. Ruud, R.E. Green (eds.). Nondestructive Methods for Material Property Determination. Springer, Boston: MA, 1984. P. 365—375. doi: 10.1007/978-1-4684-4769-9_29
- Khlybov A.A., Uglov A.L., Rodyushkin V.M., Katasonov Yu.A., Katasonov O.Yu. The Determination of Mechanical Stresses using Rayleigh Surface Waves Excited by a Magnetoacoustic Transducer // Defectoskopiya. 2014. No. 12. P. 3—10. doi: 10.1134/S1061830914120055
- Hughes J.M., Vidler J., Khanna A., Mohabuth M., Kotousov A., Ng C.-T. Measurement of Residual Stresses in Rails Using Rayleigh Waves. Advances in Mechanics: Failure, Deformation, Fatigue, Waves and Monitoring / Proc. 11th International Conference on Structural Integrity and Failure. 2018. P. 160—164. doi: 10.1177/1475921718798146
- Crecraft D.I. Ultrasonic Instrumentation: Principles, Methods and Applications // J. Phys. E: Sci. Instrum. 1983. V. 16. P. 181—189. doi: 10.1088/0022-3735/16/3/001
- Singer F. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings // Physics Procedia. 2015. V. 70. P. 334—337. doi: 10.1016/j.phpro.2015.08.219
- Ono K. Review on Structural Health Evaluation with Acoustic Emission // Appl. Sci. 2018. V. 8. P. 958. doi: 10.3390/app8060958
- Murav’ev V.V., Zuev L.B., Komarov K.L. Skorost’ zvuka i struktura staley i splavov (The speed of sound and the structure of steels and alloys). Novosibirsk: Nauka Publ., Sibirskaya izdatel’skaya firma RAN Publ., 1996. 184 p. (In Russ.).
- Hess P. Surface Acoustic Waves in Materials Science // Physics Today. 2002. V. 55. Is. 3. P. 42—47. doi: 10.1063/1.1472393
- Gulyaev Yu.V., Plesskii V.P. Propagation of Acoustic Surface Waves in Periodic Structures // Physics–Uspekhi. 1989. V. 32. Is. 1. P. 51—74. doi: 10.1070/PU1989v032n01ABEH002676
- Karabutov A.A. Laser Excitation of Surface Acoustic Waves: a New Direction in Opto-Acoustic Spectroscopy of a Solid // Physics—Uspekhi. 1985. V. 28. Is. 11. P. 1042—1051. doi: 10.1070/PU1985v028n11ABEH003981
- Gulyaev Yu.V., Dikshtein I.E., Shavrov V.G. Magnetoacoustic Surface Waves in Magnetic Crystals Near Spin-Reorientation Phase Transitions // Physics—Uspekhi. 1997. V. 40. Is. 7. P. 701—716. doi: 10.1070/PU1997v040n07ABEH000252
- Gurevich S.Yu., Petrov Yu.V., Golubev E.V. Experimental Investigations into Laser Generation of Surface Acoustic Waves in Ferromagnetics // Defectoskopiya. 2004. No. 2. P. 47—52.
- Cheeke J.D.N. Fundamentals and Applications of Ultrasonic Waves. CRC Press LLC, 2002. 452 p.
- Jian X., Dixon S., Guo N., Edwards R. Rayleigh Wave Interaction with Surface-Breaking Cracks // J. Appl. Phys. 2007. V. 101. Is. 6. P. 064906. doi: 10.1063/1.2435803
- Fan Y., Dixon S., Edwards R.S., Jian X. Ultrasonic Surface Wave Propagation and Interaction with Surface Defects on Rail Track Head // NDT & E International. 2007. V. 40. Is. 6. P. 471—477. doi: 10.1016/j.ndteint.2007.01.008
- Rosli M.H., Fan Y., Edwards R.S. Analysis of Rayleigh Wave Interactions for Surface Crack Characterization // AIP Conf. Proc. 2012. V. 1430. Is. 1. P. 209—216. doi: 10.1063/1.4716232
- He C., Deng P., Lu Y., Liu X., Liu Z., Jiao J., Wu B. Estimation of Surface Crack Depth using Rayleigh Waves by Electromagnetic Acoustic Transducers // International Journal of Acoustics and Vibration. 2017. V. 22. No. 4. P. 541—548. doi: 10.20855/ijav.2017.22.4501
- Danga P.H., Thoa L.D., Hungb L.Q., Kien D.D. Investigation of Rayleigh Wave Interaction with Surface Defects // Journal of Science and Technology in Civil Engineering (STCE) — HUCE. 2019. V. 13. No. 3. P. 95—103. doi: 10.31814/stce.nuce2019-13(3)-09
- Ermolov I.N. Teoriya i praktika ul’trazvukovogo kontrolya (Theory and Practice of Ultrasound Control). Moscow: Mashinostroenie Publ., 1981. 240 p. (In Russ.).
- Ermolov I.N., Aleshin N.P., Potapov A.I. Nerazrushayushchiy kontrol’. Kn. 2. Akusticheskie metody kontrolya: prakt. posobie (Non-Destructive Testing. Book 2. Acoustic Control Methods: Practical Manual). Moscow: Vysshaya shkola Publ., 1991. 283 p. (In Russ.).
- Cernadas D., Trillo C., Doval Á.F., López J.C., Dorrío B.V., Fernández J.L., Pérez-Amor M. Non-destructive Testing with Surface Acoustic Waves using Double-Pulse TV Holography // Meas. Sci. Technol. 2002. No. 13. P. 438—444. doi: 10.1088/0957-0233/13/4/303
- Puzyrev N.N. Metody i ob”ekty seysmicheskikh issledovaniy. Vvedenie v obshchuyu seysmologiyu (Methods and Objects of Seismic Research. Introduction to General Seismology). Novosibirsk: SO RAN NITs OIGGM Publ., 1997. 301 p. (In Russ.).
- Novotny O. Seismic Surface Waves. Salvador, Bahia, 1999. 155 p.
- Meirion F.L. Rayleigh Waves — a Progress Report // Eur. J. Phys. 1995. V. 16. P. 1—7.
- Lonsdale A., Saunders M.J.B. Strain Measurement With Surface Acoustic Wave (SAW) Resonators. In: Sensors and Actuators. London: CRC Press, 1999. 256 p. doi: 10.1201/9781003076964-3
- Mizutani K., Wakatsuki N., Ebihara T. Introduction of Measurement Techniques in Ultrasonic Electronics: Basic Principles and Recent Trends // Japanese Journal of Applied Physics. 2016. V. 55. 07KA02. 16 p. doi: 10.7567/JJAP.55.07KA02
- Landau L.D., Lifshits E.M. Teoreticheckaya fizika. T. VII. Teoriya uprugosti (Theoretical Physics. V. VII. Theory of Elasticity). Moscow: Nauka Publ., 1987. 248 p. (In Russ.).
- Viktorov I.A. Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (The Physical Foundations of the Application of Rayleigh and Lamb Ultrasonic Waves in Engineering). Moscow: Nauka Publ., 1966. 168 p. (In Russ.).
- Viktorov I.A. Zvukovye poverkhnostnye volny v tverdykh telakh (Sound Surface Waves in Solids). Moscow: Nauka Publ., 1981. 287 p. (In Russ.).
- Mozhaev V.G. Approximate Analytical Expressions for the Velocity of Rayleigh Waves in Isotropic Media and on the Basal Plane in High-symmetry Crystals // Sov Phys. Acoust. 1991. V. 37. Is. 2. P. 186—189.
- Rahman M., Barber J.R. Exact Expressions for the Roots of the Secular Equation for Rayleigh Waves // Journal of Applied Mechanics. 1995. V. 62. P. 250—252. doi: 10.1115/1.2895917
- Herbison-Evans D. Solving Quartics and Cubics for Graphics. Technical Report TR94-487. 1994. (Updated 31 March 2011, 27 May 2017, 13 January 2019). doi: 10.1016/b978-0-12-543457-7.50009-7
- Cardano G. Artis Magnae, Sive de Regulis Algebraicis Liber Unus. Nurmberg, 1545, 302 p. (In Latin).
- Stedall J. From Cardano’s Great Art to Lagrange’s Reflections. Filling a Gap in the History of Algebra. Heritage of European Mathematics. Zurich: European Mathematical Society (EMS), 2011. 236 p. (German, English). doi: 10.4171/092
- Zhao T., Wang D., Hong H. Solution Formulas for Cubic Equations without or with Constraints // J. Symb. Comput. 2011. V. 46. P. 904—918. doi: 10.1016/j.jsc.2011.02.001
- Nkemzi D.A. New Formula for the Velocity of Rayleigh Waves // Wave Motion. 1997. V. 26. P. 199—205. doi: 10.1016/s0165-2125(97)00004-8
- Malischewsky P.G. Comment to “A New Formula for the Velocity of Rayleigh Waves” by D. Nkemzi [Wave Motion 26 (1997) 199—205] // Wave Motion. 2000. V. 31. P. 93—96. doi: 10.1016/s0165-2125(99)00025-6
- Malischewsky P.G. Some Special Solutions of Rayleigh’s Equation and the Reflections of Body Waves at a Free Surface // Geofísica Internacional. 2000. V. 39. Is. 2. P. 155—160. doi: 10.22201/igeof.00167169p.2000.39.2.272
- Malischewsky P.G. A Note on Rayleigh-Wave Velocities as a Function of the Material Parameters // Geofísica Internacional. 2004. V. 43. No. 3. P. 507—509. doi: 10.22201/igeof.00167169p.2004.43.3.955
- Mechkour H. The Exact Expressions for the Roots of Rayleigh Wave Equation. BSG Proceedings 8, Geometry Balkan Press, 2003. P. 96—104.
- Gurevich S.Yu., Golubev E.V. A Note on Calculating Rayleigh Wave Velocity and the Derivative of the Rayleigh Determinant in Elastic Media // Bulletin of the South Ural State University. Series of “Mathematics. Mechanics. Physics”. 2023. V. 15. No. 1. P. 69—75. doi: 10.14529/mmph230108
- Holmes G.C. The Use of Hyperbolic Cosines in Solving Cubic Polynomials // The Mathematical Gazette. 2002. V. 86. No. 507. P. 473—477. doi: 10.2307/3621149
- Nickalls R.W.D. A New Approach to Solving the Cubic: Cardan’s Solution Revealed // The Mathematical Gazette. 1993. V. 77. P. 354—359. doi: 10.2307/3619777
- Kolomenskii Al.A., Maznev A.A. Poverkhnostnye otkliki pri lazernom vozdeystvii na tverdoe telo: releevskie volny i predvestniki (Laser Induced Surface Responses in Solid: Rayleigh Waves and Fore-runners) // Akusticheskij Zhurnal. 1990. V. 36. No. 3. P. 463—469. (In Russ.).
- Nowacki W. Teoria Sprezystosci. Warszawa, Panstwowe Wydawnictwo Naukowe, 1970. 769 p. (In Polish).
- Pichugin A. Approximation of the Rayleigh Wave Speed. People.Brunel.Ac.Uk (Unpublished draft), 2008. P. 1—5. http://people.brunel.ac.uk/~mastaap/draft06rayleigh.pdf
- Gurevich S.Yu., Kozhevnikov D.G., Golubev E.V. The Roots of the Rayleigh Characteristic Equation for Rational Values of the Parameter // Bulletin of the South Ural State University. Series of “Mathematics. Mechanics. Physics”. 2024. V. 16. No. 1. P. 56—59. doi: 10.14529/mmph240107
- Bergmann L. Ultrasonics and their Scientific and Technical Applications. G. Bell and Sons Limited, 1938. 264 p.
- Nesvijski E.G. On Rayleigh Equation and Accuracy of Its Real Roots Calculations // Journal of Thermoplastic Composite Materials. 2001. V. 14. Is. 5. P. 356—364. doi: 10.1106/63UT-R7QM-6T7F-FRJQ
- Vinh P.C., Malischewsky P.G. Improved Approximations of the Rayleigh Wave Velocity // Journal of Thermoplastic Composite Materials. 2008. V. 21. Is. 4. P. 337—352. doi: 10.1177/0892705708089479
- Vinh P.C., Malischewsky P.G. Explanation for Malischewsky’s Approximate Expression for the Rayleigh Wave Velocity // Ultrasonics. 2006. V. 45. Is. 1—4. P. 77—81. doi: 10.1016/j.ultras.2006.07.001
Supplementary files
