THREE-DIMENSIONAL POSITIONING OF INTERNAL VOLUMETRIC DEFECTS IN SOLID MATERIALS BASED ON ACOUSTIC-ELECTRIC TRANSFORMATIONS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article considers numerical modeling of the method of defect localization in a three-dimensional (3D) structure based on acoustic-electrical transformations. It is shown that this method allows calculating the location of defects based on the parameters of the electromagnetic response to a deterministic pulsed acoustic excitation at selected points on the surface of the tested solid sample. To test the developed modeling method, two finite element models were developed: single-layer and two-layer three-dimensional structures. The results of calculations using these models confirm the efficiency of the acoustic-electrical conversion method in localizing defects in three-dimensional heterogeneous solid structures

作者简介

Junhua Luo

Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: lulubvv@foxmail.come-mail
俄罗斯联邦, 634050 Tomsk, Lenina Ave., 30

Anatoly Bespalko

Tomsk State University of Control Systems and Radio Electronics

Email: besko48@tpu.ru
俄罗斯联邦, 634050 Tomsk, Lenina Ave., 40

Grigory Utsyn

Tomsk State University of Control Systems and Radio Electronics

Email: uge23@yandex.ru
俄罗斯联邦, 634050 Tomsk, Lenina Ave., 40

参考

  1. Vorobiev A.A., Zavadovskaya E.K., Salnikov V.N. Change in electrical conductivity and radiation of rocks and minerals during physico-chemical processes in them // Doklady Akademii Nauk SSSR [Proceedings of the USSR Academy of Sciences]. 1975. V. 220. No. 1. P. 82—85.
  2. Vdovin A.G., Ivanchenko V.S. Natural electromagnetic radiation logging in iron ore deposits (example of Gusevogorskoe and Severno-Taratashskoe deposits) // Izvestiya Vuzov. Gornyi Zhurnal [Universities’ Proceedings. Mining Journal]. 2018. No. 8. P. 66—74. doi: 10.21440/0536-1028-2018-8-66-74
  3. Ogawa T., Oike K., Miura T. Electromagnetic radiations from rocks // J. Geophys. Res. 1985. V. 90. P. 6245—6249. doi: 10.1029/JD090ID04P06245
  4. Sharma S.K., Chauhan V.S., Sinapius M.A. review on deformation-induced electromagnetic radiation detection: history and current status of the technique // Journal of Materials Science. 2021. V. 56. P. 4500—4551. https://doi.org/10.1007/s10853-020-05538-x.
  5. Yamada I., Masuda K., Mizutani H. Electromagnetic and acoustic emission associated with rock fracture // Phys. Earth Planet. Int. 1989. V. 57. No. 1—2. P. 157—168. doi: 10.1016/0031-9201(89)90225-2
  6. Bespal’ko A.A., Surzhikov A.P., Khorsov N.N., Yavorovich L.V., Klimko V.K., Shtirts V.A., Shipeev O.V. Observations of changes in the stress state of the rock mass after a large explosion based on electromagnetic emission parameters // Physical Mesomechanics. 2004. V. 7. Special Issue Pt. 2. P. 253—256. Corpus ID: 128257709.
  7. Frid V., Rabinovitch А., Bahat D. Fracture induced electromagnetic radiation // Journal of Physics D: Applied Physics. 2003. V. 36. No. 13. P. 1620—1628. doi: 10.1088/0022-3727/36/13/330
  8. Koktavy P. Experimental study of electromagnetic emission signals generated by crack generation in composite materials // Meas. Sci. Technol. 2009. V. 20. Р. 1—8. doi: 10.1088/0957-0233/20/1/015704
  9. Fursa T.V., Dunn D.D., Osipov K.Yu. Development of a mechano-electric method for determining the location of a defect in a concrete product // Kontrol’. Diagnostika [Testing. Diagnostics]. 2012. No. 11 (173). P. 66—69. URL: https://rucont.ru/efd/464756.
  10. Perel’man M.E., Khatiashvili N.G. Generation of electromagnetic radiation by double electric layers and its manifestation in earthquakes // Doklady Akademii Nauk SSSR [Proceedings of the USSR Academy of Sciences]. 1983. V. 271. No. 1. P. 80—83.
  11. Bespalko A.A., Isaev Y.N., Yavorovich L.V. Transformation of acoustic pulses into electromagnetic response in stratified and damaged structures // Journal of Mining Science. 2016. V. 52. No. 2. Р. 279—285. https://doi.org/10.1134/S1062739116020418.
  12. Nitsan U. Electromagnetic emission accompanying fracture of quartz-bearing rocks // Geophysical Research letters. 1977. V. 4. No. 8. P. 333—336. doi: 10.1029/GL004I008P00333
  13. Bespalko A.A., Yavorovich L.V., Fedotov P.I. Mechanoelectrical transformations in quartz and quartz-bearing rocks under acoustic action // Journal of Mining Science. 2007. V. 43. P. 472—476. https://doi.org/10.1007/s10913-007-0049-8.
  14. Perel’man M.E., Khatiashvili N.G. Generation of electromagnetic radiation by double electric layers and its manifestation in earthquakes // Doklady Akademii Nauk SSSR [Proceedings of the USSR Academy of Sciences]. 1983. V. 271. No. 1. P. 80—83.
  15. Bespal’ko A.A., Lyukshin B.A., Utsyn G.E., Yavorovich L.V. Electromagnetic response of layered dielectric structures to pulsed acoustic impact // Izvestiya Vuzov. Fizika [Russian Physics Journal]. 2015. V. 58. No. 4. P. 120—126. doi: 10.1007/s11182-015-0535-4
  16. Fursa T.V., Dunn D.D. Development of a method for flaw detection of heterogeneous dielectric materials based on the use of the phenomenon of mechanoelectric transformations // Russian Journal of Nondestructive Testing. 2010. No. 1. P. 8—13. URL: http://elibrary.ru/item.asp?id=15017377.
  17. Khorsov P.N., Surzhikov V.P., Demikhova A.A. Development the Adjusted Mathematical Model of Responses in the Nondestructive Testing Defectiveness Method Based on the Mechanoelectrical Transformations // IOP Conf. Series: Materials Science and Engineering. 2017. V. 168. P. 012106. doi: 10.1088/1757-899X/168/1/012106
  18. Fursa T.V., Utsyn G.E., Petrov M., Dann D.D., Sokolovskiy A.N. Detecting degradation in reinforced concrete subjected to uniaxial compression, using the parameters of electric response to mechanical impact // Research in Nondestructive Evaluation. 2019. V. 30. Is. 6. No. 2. P. 317—333. doi: 10.1080/09349847.2018.1522404
  19. Bespal’ko A., Surzhikov A., Fedotov P., Slepchenko G., Pomishin E., Dmitrieva S. Application of the acoustic-electric method to estimate the mineralisation of natural water in contact with rocks // Journal of Applied Geophysics. 2020. V. 181. P. 104140. https://doi.org/10.1016/j.jappgeo.2020.104140.
  20. Bespalko A.V., Dunn D.D., Fedotov P.I., Dmitrieva S.A., Luo J. Numerical and experimental modeling of the acoustic-electrical method of non-destructive testing of solid dielectrics // Journal of Instrument Engineering. 2023. V. 66. No. 4. P. 320—334.
  21. Luo J., Bespal’ko A.A., Lu D., Li B. Method for the P-wave arrival pickup of rock fracture acoustic emission signals under strong noise // Measurement Science and Technology. 2024. V. 35. No. 8. P. 086102. doi: 10.1088/1361-6501/ad3d02
  22. Seeger K. Semiconductor Physics. Wien: Springer-Werlag, 1973. XV. 514 р.
  23. Huo X., Li Sh., Sun B., Wang Zh. W., Wei D. Recent Progress of Chemical Reactions Induced by Contact Electrification // Molecules. 2025. V. 30. No. 3. P. 584. doi: 10.3390/molecules30030584
  24. Oreshkin P.T. Physics of Semiconductors and Dielectrics. Moscow: Vysshaya Shkola, 1977. 448 p.
  25. Shinbrot Troy, Komatsu Teruaki, Zhao Quichuan. Spontaneous tribocharging of similar materials // EPL (Europhysics Letters). 2008. V. 83. No. 2. P. 24004. doi: 10.1209/0295-5075/83/24004. Corpus ID: 40379103.
  26. Mashkov Yu.K., Kropotin O.V. Tribophysics and Structural Modification of Tribosystem Materials. Omsk: Omsk State Technical University Press, 2009. 324 p.
  27. Sobarso Juan Carlos, Pertl Felix, Balazs Daniel M., Costanzo Tommaso, Sauer Markus, Foelske Annette, Ostermann Markus, Pichler Christian M., Wang Yongkang, Nagata Yuki, Bonn Mischa, Vaitukaitis Scott. Spontaneous ordering of identical materials into a triboelectric series // Nature. 2025. V. 638 (8051). P. 664—669. doi: 10.1038/s41586-024-08530-6. www.nature.com/articles/s41586-024-08530-6.
  28. Yin Shenxin, Xiao Huapan, Cui Zhiwen, Kundu Tribikram. Rapid localization of acoustic source using sensor clusters in 3D homogeneous and heterogeneous structures // Structural Health Monitoring. 2020. No. 3. P. 1145—1155. https://doi.org/10.1177/1475921720945195.
  29. Purcell E.M., Morin D.J. Electricity and magnetism / 3rd ed. Cambridge: Cambridge University Press, 2013. P. 839. ISBN 978-1-107-01402-2.
  30. Yin S., Xiao H., Cui Z., & Kundu T. Rapid localization of acoustic source using sensor clusters in 3D homogeneous and heterogeneous structures // Structural Health Monitoring. 2021. V. 20. No. 3. P. 1145—1155. doi.org/10.1177/147592172094519513.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».