Асимптотика ультразвукового зондирующего поля в анизотропных материалах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для моделирования волнового поля ультразвукового преобразователя в материалах с сильной анизотропией (монокристаллические сплавы турбинных лопаток, композиты, сварные соединения и др.) строится физически наглядное асимптотическое представление для квазисферических объемных волн, возбуждаемых поверхностным источником колебаний в полупространстве с произвольной анизотропией упругих свойств. Асимптотика получена методом стационарной фазы из интегрального представления решения в виде контурных интегралов обратного преобразования Фурье. Особенности ее вывода и численной реализации обсуждаются на примере трансверсально-изотропного композитного материала и монокристаллического сплава никеля с кубической анизотропией. Зависимость стационарных точек от направления здесь сложнее, чем в изотропном случае, вплоть до появления множественных стационарных точек и складок, дающих дополнительные волновые фронты и каустики. Проводится сравнение с характеристиками плоских волн, которые описываются собственными решениями классического уравнения Кристоффеля. Показано, что несмотря на явление множественности волновых фронтов, варьирование ориентацией плоских волн позволяет получить те же векторы групповой скорости, что и у каждой из волн, описываемых асимптотикой.

Полный текст

Доступ закрыт

Об авторах

Евгений Викторович Глушков

Кубанский государственный университет

Автор, ответственный за переписку.
Email: evg@math.kubsu.ru
Россия, ул. Ставропольская, 149, Краснодар, 350040

Наталья Вилениновна Глушкова

Кубанский государственный университет

Email: nvg@math.kubsu.ru
Россия, ул. Ставропольская, 149, Краснодар, 350040

Список литературы

  1. Lane C. Wave Propagation in Anisotropic Media / In: The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades. Springer Theses. Cham: Springer. 2014. https://doi.org/10.1007/978-3-319-02517-9_2
  2. Пьянков В.А., Пьянков И.И. Акустические методы контроля лопаток газотурбинных двигателей // В мире неразрушающего контроля. 2019. Т. 22. № 1(83). С. 36–44. https://doi.org/10.12737/article_5ca31f9ac25011.96368656
  3. Morokov E., Titov S., Levin V. In situ high-resolution ultrasonic visualization of damage evolution in the volume of quasiisotropic CFRP laminates under tension // Composites Part B Engineering. 2022. V. 247. P. 110360. http://dx.doi.org/10.1016/j.compositesb.2022.110360
  4. Levin V., Petronyuk Y., Artyukov I., Bukreeva I., Malykhin A., Longo E., D’Amico L., Giannoukos K., Tromba G. Three-Dimensional Study of Polymer Composite Destruction in the Early Stages // Polymers. 2023. V. 15. P. 276. https://doi.org/10.3390/polym15020276
  5. Базулин Е.Г. Учет неоднородной анизотропии сварного соединения при восстановлении изображения отражателей по эхосигналам, измеренным ультразвуковой антенной решеткой // Дефектоскопия. 2017. № 1. С. 11—25. https://doi.org/10.1134/S1061830917010028
  6. Kalkowski M.K., Lowe M.J.S., Samaitis V., Schreyer F., Robert S. Weld map tomography for determining local grain orientations from ultrasound // Proc. R. Soc. A. 2023. V. 479. P. 20230236. https://doi.org/10.1098/rspa.2023.0236
  7. Musgrave M.J.P. The propagation of elastic waves in crystals and other anisotropic media // Reports. Prog. in Phys. 1959. V. 22. P. 74—96. https://doi.org/10.1088/0034-4885/22/1/303
  8. Buchwald V.T. Elastic Waves in Anisotropic Media // Proc. Royal Soc. London. Series A, Math. and Phys. Sciences. 1959. V. 253. No. 1275. P. 563—580. http://www.jstor.org/stable/100706 Accessed 23 March 2024.
  9. Меркулов Л.Г., Яковлев Л.А. Особенности распространения и отражения ультразвуковых лучей в кристаллах // Акуст. журн. 1962. Т. 8. № 1. С. 99—106. http://www.akzh.ru/pdf/1962_1_99-106.pdf
  10. Merkulov L.G. Ultrasonic waves in crystals // Appl. Mater. Res. 1963. V. 2. P. 231—240.
  11. Федоров Ф.И. Теория упругих волн в кристаллах. М.: Наука, 1965. 388 с.
  12. Auld B.A. Acoustic fields and waves in solids. New York: Wiley, 1973. 423 p.
  13. Петрашень Г.И. Распространение волн в анизотропных упругих средах. Л.: Наука, 1980. 280 с. https://www.libex.ru/detail/book111023.html
  14. Chadwick P. Wave propagation in transversely isotropic elastic media. I. Homogeneous plane waves // Proc. Roy. Soc. Lond. 1989. V. 422. P. 23—66. https://www.jstor.org/stable/2398523
  15. Alshits V.I., Lothe J. Some basic properties of bulk elastic waves in anisotropic media // Wave Motion. 2004. V. 40. P. 297—313. https://doi.org/10.1016/j.wavemoti.2004.02.004
  16. Бабич В.М., Киселев А.П. Упругие волны. Высокочастотная теория. СПб.: БХВ-Петербург, 2014. 320 с.
  17. Wu K., Nagy P.B., Adler L. Far field radiation of a point source on the free surface of semi-infinite anisotropic solids / In: Review of Progress in Quantitative Nondestructive Evaluation. Eds. D.O. Thompson, D.E. Chimenti. N.Y.: Plenum Press, 1990. V. 9. P. 149—156.
  18. Wu K., Nagy P.B., Adler L. Far-field radiation of a vibrating point source in anisotropic media // J. Nondestruct. Eval. 1991. V. 10. P. 71—78. https://doi.org/10.1007/BF00568102
  19. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с.
  20. Бабешко В.А., Глушков Е.В., Глушкова Н.В. Анализ волновых полей, возбуждаемых в упругом стратифицированном полупространстве поверхностными источниками // Акуст. жуpн. 1986. Т. 32. № 3. С. 366—371. http://www.akzh.ru/pdf/1986_3_366-371.pdf
  21. Глушков Е.В., Глушкова Н.В., Кривонос А.С. Возбуждение и распространение упругих волн в многослойных анизотропных композитах // Прикл. математика и механика. 2010. Т. 74. № 3. С. 419—432.
  22. Glushkov E., Glushkova N., Eremin A. Forced wave propagation and energy distribution in anisotropic laminate composites // J. Acoust. Soc. Am. 2011. V. 129 (5). P. 2923—2934. http://dx.doi.org/10.1121/1.3559699
  23. Глушков Е.В., Глушкова Н.В. Упругие волны в анизотропных материалах / Сборник трудов XXXV Сессии Российского Акустического Общества. М.: Издательство ГЕОС, 2023. С. 942—946. https://doi.org/10.34756/GEOS.2023.17.38421
  24. Glushkov E.V., Glushkova N.V., Kiselev O.N. Body wave asymptotics for an anisotropic elastic half-space with a surface source / 2023 Days on Diffraction (DD). St. Petersburg. Russian Federation. 2023. P. 78—82. https://doi.org/10.1109/DD58728.2023.10325771
  25. Глушков Е.В., Глушкова Н.В., Татаркин А.А., Ермоленко О.А. Моделирование отраженного ультразвукового поля в составных образцах // Дефектоскопия. 2024. № 11. C. 3—14. https://doi.org/10.31857/S0130308224110014
  26. Свешников А.Г. Принцип предельного поглощения для волновода // Докл. АН СССР. 1951. Т. 80. № 3. С. 345—347.
  27. Глушков Е.В., Сыромятников П.В. Анализ волновых полей, возбуждаемых поверхностным гармоническим источником в анизотропном полупространстве. Краснодар, 1985. 11 с. Рукопись представлена Кубанским госуниверситетом. Деп. в ВИНИТИ 07.08.85. № 5861-85.
  28. Tolstoy I., Usdin E. Wave propagation in elastic plates: low and high mode dispersion // J. Acoust. Soc. Am. 1957. V. 29. P. 37—42. https://doi.org/10.1121/1.1908675
  29. Бурлий П.В., Кучеров И.Я. Обратные упругие волны в пластинах // Письма в ЖЭТФ. 1977. Т. 26. № 9. С. 644—647. https://journals.ioffe.ru/issues/722
  30. Федорюк М.В. Метод перевала. М.: Наука, 1977. 368 с.
  31. Wang L., Yuan F.G. Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments // Compos. Sci. Technol. 2007. V. 67 (8). P. 1370—1384. https://doi.org/10.1016/j.compscitech.2006.09.023
  32. Пресляк М.Ю. Исследование особенностей и расчет сечений волновой поверхности в анизотропной упругой среде // Акуст. журн. 1981. Т. 27. № 2. С. 291—295. http://www.akzh.ru/pdf/1981_2_291-295.pdf

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Геометрия задачи.

Скачать (122KB)
3. Рис. 2. Схематическая иллюстрация зависимости положения стационарных точек от угла θ в изотропном (а) и анизотропном (б) случаях.

Скачать (116KB)
4. Рис. 3. Поверхности σ^n (вверху) и их проекции на плоскость (β1, β2) (внизу) для трансверсально-изотропного композитного материала GE.

Скачать (455KB)
5. Рис. 4. То же, что на рис. 3, но для никелевого сплава NS с кубической анизотропией.

Скачать (525KB)
6. Рис. 5. Движение стационарных точек в областях D2 и D3 при изменении угла θ от 0 (крупные маркеры) до 0,45π; φ = 0, материал NS.

Скачать (458KB)
7. Рис. 6. Зависимость групповой скорости vn квазисферических волн (10) от θ при φ = 0, материал NS; маркерами-кружочками показаны значения, нанесенные ниже на рис. 7г.

Скачать (158KB)
8. Рис. 7. Зависимость фазовой скорости cn (а), групповой скорости vn (б) и направляющего угла θV вектора групповой скорости плоских волн от угла ориентации фронта θ при φ = 0 (в); групповые скорости vnв зависимости от θV (г); маркерами-кружочками показаны взятые с рис. 6 групповые скорости квазисферических волн (10) для трех направлений θ / π = 0, 0,2 и 0,4, φ = 0; материал NS.

Скачать (337KB)
9. Рис. 8. Диаграммы направленности (зависимости |anm| от θ при φ = 0) для квазисферических волн, возбуждаемых вертикальной (вверху, а—б) и касательной (внизу, г—е) сосредоточенными нагрузками.

Скачать (384KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».