Прогнозирование групповых дефектов в модели прямоугольной профильной балки с использованием основанной на частотном отклике кривизны формы колебаний с помощью нейронной сети с обратным распространением
- Авторы: Гупта С.К.1, Дас С.1
-
Учреждения:
- Национальный технологический институт
- Выпуск: № 4 (2023)
- Страницы: 14-36
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0130-3082/article/view/144341
- DOI: https://doi.org/10.31857/S0130308223040024
- EDN: https://elibrary.ru/XYHAJW
- ID: 144341
Цитировать
Аннотация
Об авторах
Сону Кумар Гупта
Национальный технологический институт
Email: sngupta77@gmail.com
Агартала, Индия
Сураджит Дас
Национальный технологический институт
Email: surajit2006r@gmail.com
Агартала, Индия
Список литературы
- Wahab M.A., De Roeck G. Damage detection in bridges using modal curvatures: application to a real damage scenario //j. Sound. Vib. 1999. V. 226 (2). P. 217-235. https://doi.org/10.1006/jsvi.1999.2295
- Owolabi G. M., Swamidas A.S.J., Seshadri R. Crack detection in beams using changes in frequencies and amplitudes of frequency response functions //j. Sound. Vib. 2003. V. 265. No. 1. P. 1-22. https://doi.org/10.1016/S0022-460X(02)01264-6
- Sinou Jean-Jacques. Damage assessment based on the frequencies' ratio surfaces intersection method for the identification of the crack depth, location and orientation // Structural Durability and Health Monitoring. 2007. V. 3. No. 3. P. 134-162.
- Altunışık Ahmet Can, Okur Fatih Yesevi, Kahya Volkan. Structural identification of a cantilever beam with multiple cracks: Modeling and validation // International Journal of Mechanical Sciences. 2017. V. 130. P. 74-89. https://doi.org/10.1016/j.ijmecsci.2017.05.039
- Yazdekhasti Sepideh, Piratla Kalyan R., Atamturktur Sez, Khan Abdul. Experimental evaluation of a vibration-based leak detection technique for water pipelines // Structure and Infrastructure Engineering. 2018. V. 14. No. 1. P. 46-55. https://doi.org/10.1080/15732479.2017.1327544
- Altunışık Ahmet Can, Okur Fatih Yesevi, Karaca Sebahat, Kahya Volkan. Vibration-based damage detection in beam structures with multiple cracks: modal curvature vs. modal flexibility methods // Nondestructive Testing and Evaluation. 2019. V. 34. No. 1. P. 33-53. https://doi.org/10.1080/10589759.2018.1518445
- Roy Koushik. Structural damage identification using mode shape slope and curvature // Journal of Engineering Mechanics. 2017. V. 143. No. 9. P. 04017110. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001305
- Feng Dongming, Feng Maria Q. Output-only damage detection using vehicle-induced displacement response and mode shape curvature index // Structural Control and Health Monitoring. 2016. V. 23. No. 8. P. 1088-1107. https://doi.org/10.1002/stc.1829
- Pandey A.K., Biswas M., Samman M.M. Damage detection from changes in curvature mode shapes //j. of sound and vibration. 1991. V. 145. No. 2. P. 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
- Brigham E.O. The Fast Fourier Transform and Applications. Englewood Cliffs, NJ: Prentice Hall, 1988.
- Zenzen R., Khatir Samir, Belaidi I., Wahab Magd Abdel. Structural health monitoring of beam-like and truss structures using frequency response and particle swarm optimization // Numerical Modelling in Engineering. Springer, Singapore, 2018. P. 390-399. DOI: 10.1007_978-981-13-2273-0_30
- Worden Keith, Charles R. Farrar, Jonathan Haywood, Michael Todd. A review of nonlinear dynamics applications to structural health monitoring. Structural Control and Health Monitoring // The Official Journal of the International Association for Structural Control and Monitoring and the European Association for the Control of Structures. 2008. V. 15. No. 4. P. 540-567. https://doi.org/10.1002/stc.215
- de la Cruz Rafael, Salehi Paniagua V.K., Salgado Sánchez P., García-Fogeda P. A Vibration-Based Method for assessing the integrity of welded structures // Nondestructive Testing and Evaluation. 2020. V. 35. No. 4. P. 452-472. https://doi.org/10.1080/10589759.2019.1692011
- Pooya Seyed Majid Hosseini, Massumi Ali. A novel and efficient method for damage detection in beam-like structures solely based on damaged structure data and using mode shape curvature estimation // Applied Mathematical Modelling. 2021. V. 91. P. 670-694. https://doi.org/10.1016/j.apm.2020.09.012
- Sha Ganggang, Radzieński Maciej, Cao Maosen, Ostachowicz Wiesław. A novel method for single and multiple damage detection in beams using relative natural frequency changes // Mechanical Systems and Signal Processing. 2019. V. 132. P. 335-352. https://doi.org/10.1016/j.ymssp.2019.06.027
- Gorgin Rahim. Damage identification technique based on mode shape analysis of beam structures // Structures. Elsevier, 2020. V. 27. P. 2300-2308. https://doi.org/10.1016/j.istruc.2020.08.034
- Hooman Nick, Armin Aziminejad. Vibration-Based Damage Identification in Steel Girder Bridges Using Artificial Neural Network Under Noisy Conditions // Journal of Nondestructive Evaluation. 2021. V. 40. No. 1. P. 1-22. https://doi.org/10.1007/s10921-020-00744-8
- Hamey Cole S., Wahyu Lestari, Pizhong Qiao, Gangbing Song. Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes // Structural Health Monitoring. 2004. V. 3. No. 4. P. 333-353. https://doi.org/10.1177/1475921704047502
- Kumar Anjneya, Koushik Roy. Response surface-based structural damage identification using dynamic responses // Structures. Elsevier. 2021. V. 29. P. 1047-1058. https://doi.org/10.1016/j.istruc.2020.11.033
- Gupta Krishanu, Bhattacharjee Biplab, Gupta Sonu Kumar, Chakraborti Prasun. Study of natural frequencies of natural rubber cored novel sandwich structure without tip mass // Structures. Elsevier, 2020. V. 28. P. 651-658. https://doi.org/10.1016/j.istruc.2020.09.010
- Stoykov S., Manoach E. Damage localization of beams based on measured forced responses // Mechanical Systems and Signal Processing. 2021. V. 151. P. 107379. https://doi.org/10.1016/j.ymssp.2020.107379
- Qiao Pizhong, Lu Kan, Lestari Wahyu, Wang Jialai. Curvature mode shape-based damage detection in composite laminated plates // Composite Structures. 2007. V. 80. No. 3. P. 409-428. https://doi.org/10.1016/j.compstruct.2006.05.026
- Sarehati Umar, Norhisham Bakhary, Abidin A.R.Z. Response surface methodology for damage detection using frequency and mode shape // Measurement. 2018. V. 115. P. 258-268. https://doi.org/10.1016/j.measurement.2017.10.047
- Gupta S.K., Das S. Damage detection in a cantilever beam using noisy mode shapes with an application of artificial neural network-based improved mode shape curvature technique // Asian. J. Civ. Eng. 2021. https://doi.org/10.1007/s42107-021-00404-w
- Gupta S.K., Das S. Multiple Damage Identification in a Beam Using Artificial Neural Network-Based Modified Mode Shape Curvature // Arab. J. Sci. Eng. 2021. https://doi.org/10.1007/s13369-021-06267-2
- Cawley Peter, Adams Robert Darius. The location of defects in structures from measurements of natural frequencies // Journal of Strain Analysis for Engineering Design. 1979. V. 14. No. 2. P. 49-57. https://doi.org/10.1243/03093247V142049
- Hassiotis Sophia, Jeong Garrett D. Identification of stiffness reductions using natural frequencies //j. Eng. Mech. 1995. V. 121. No. 10. P. 1106-1113. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:10(1106)
- Rucevskis S., Wesolowski Miroslaw. Identification of damage in a beam structure by using mode shape curvature squares // Shock and Vibration. 2010. V. 17. No. 4-5. P. 601-610. https://doi.org/10.3233/SAV-2010-0551
- Bishop Christopher M. Neural networks for pattern recognition. Oxford university press, 1995.
- Bakhary Norhisham, Hong Hao, Deeks Andrew J. Structure damage detection using a neural network with multi-stage substructuring // Advances in Structural Engineering. 2010. V. 13. No. 1. P. 95-110. https://doi.org/10.1260/1369-4332.13.1.95
- Padil Khairul H., Bakhary Norhisham, Abdulkareem Muyideen, Li Jun, Hao Hong. Non-probabilistic method to consider uncertainties in frequency response function for vibration-based damage detection using Artificial Neural Network // Journal of Sound and Vibration. 2020. V. 467. P. 115069. https://doi.org/10.1016/j.jsv.2019.115069
- Hakim S.J.S., Razak H. Abdul, Ravanfar S.A. Fault diagnosis on beam-like structures from modal parameters using artificial neural networks // Measurement. 2015. V. 76. P. 45-61. https://doi.org/10.1016/j.measurement.2015.08.021
- Ismail Harun Mohamed, Ng Hoon Kiat, Queck Cheen Wei, Gan Suyin. Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends // Applied energy. 2012. V. 92. P. 769-777. https://doi.org/10.1016/j.apenergy.2011.08.027
- Yusaf Talal F., Buttsworth D. R., Saleh Khalid H., Yousif B.F. CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network // Applied Energy. 2010. V. 87. No. 5. P. 1661-1669. https://doi.org/10.1016/j.apenergy.2009.10.009
- Bhowmik Subrata, Rajsekhar Panua, Durbadal Debroy, Abhishek Paul. Artificial neural network prediction of diesel engine performance and emission fueled with Diesel-Kerosene-Ethanol Blends: A fuzzy-based optimization // Journal of Energy Resources Technology. 2017. V. 139. No. 4. https://doi.org/10.1115/1.4035886
- Lubna Badri. Development of neural networks for noise reduction // Int. Arab J. Inf. Technol. 2010. V. 7. No. 3. P. 289-294.
- Limongelli M.P. Frequency response function interpolation for damage detection under changing environment // Mechanical Systems and Signal Processing. 2010. V. 24. No. 8. P. 2898-2913.
- Hassoun Mohamad H. Fundamentals of artificial neural networks. MIT press, 1995.
- Young Dana, Felgar Robert P. Tables of characteristic functions representing nomal modes of vibration of a beam. 1949.
Дополнительные файлы
