Organization of juvenile roach, RUTILUS RUTILUS (CYPRINIDAE) of different ages: exploratory behavior in a plus maze

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of research on spontaneous alternation and changing patterns in the exploratory behavior of roach are presented. Larvae and 1‑month old and 4‑month old roach juveniles use two behavioral model in a plus maze. They move around the perimeter of the maze and perform shuttle movement between any two arms. 4‑month old juveniles use moving around the perimeter of the maze more often than the other age groups studied. Тhe proportion of shuttle movements does not depend on age. The level of spontaneous alternation in 1‑month old juveniles is significantly lower than the random level. Larvae and 4‑month old juveniles show a random level of spontaneous alternation. This depends on the pattern behavior that fish prefer to use. In general, as the fish grow older, the exploratory behavior of the roach seems to become more effective.

About the authors

N. A. Pankova

Papanin Institute of Inland Water Biology, Russian Academy of Sciences

Email: n.pankova.ibiw@yandex.ru
Borok, Nekouzskii raion, Yaroslavl oblast, 152742 Russia

E. A. Osipova

Papanin Institute of Inland Water Biology, Russian Academy of Sciences

Borok, Nekouzskii raion, Yaroslavl oblast, 152742 Russia

References

  1. Михеев В.Н., 2006. Неоднородность среды и трофические отношения у рыб. М.: Наука. 191с.
  2. Рунион Р., 1982. Справочник по непараметрической статистике. Современный подход. Пер. с англ. М.: Финансы и статистика. 198 с.
  3. Balci F., Ramey-Balci P.A., Ruamps P., 2014. Spontaneous alternation and locomotor activity in three species of marine crabs: green crab (Carcinus maenas), blue crab (Callinectes sapidus), and fiddler crab (Uca pugnax) // Journal of Comparative Psychology. V. 128. № 1. P. 65–73.
  4. Badr A., El-Sayed M.F., Vornanen M., 2016. Effects of seasonal acclimatization on temperature dependence of cardiac excitability in the roach, Rutilus rutilus // Journal of Experimental Biology. Т. 219. № 10. С. 1495–1504.
  5. Benureau F., Oudeyer P.Y., 2015. Diversity-driven selection of exploration strategies in multi-armed bandits // Joint IEEE International Conference on Development and Epigenetic Robotics (ICDL – EpiRob). USA, Providence: IEEE. P. 135–142.
  6. Bögli S.Y., Huang M.Y.-Y., 2017. Spontaneous alternation behavior in larval zebrafish // Journal of Experimental Biology. V. 220. № 2. P. 171–173.
  7. Chiussi R., Díaz H., Rittschof D., Forward R.B., 2001. Orientation of the Hermit Crab Clibanarius Antillensis: Effects of Visual and Chemical Cues // Journal of Crustacean Biology. V. 21. Issue 3. P. 593–605.
  8. Dember W.N., Richman C.L., Charles L., 1989. Spontaneous Alternation Behavior. New York: Springer. 212 p.
  9. Dubreuil D., Tixier C., Dutrieux G., Edeline J.M., 2003. Does the radial arm maze necessarily test spatialmemory? // Neurobiology of learning and memory. V. 79. № 1. P. 109–117.
  10. Grossman L., Utterback E., Stewart A., Gaikwad S.L., Chung K.M. et al., 2011. Effects of piracetam on behavior and memory in adult zebrafish // Brain research bulletin. V. 85. № 1. P. 58–63.
  11. Haight J.L., Schroeder J.A., 2011. Spatial Cognition in Zebrafish //Zebrafish Models in Neurobehavioral Research. V. 52. P. 235–248.
  12. Harvey A.W., Bovell N.K-A., 2006. Spontaneous alternation behavior in Paramecium // Learning & Behavior. V. 34. Р. 361–365.
  13. Hliňák Z., Krejčí I., 2006. Spontaneous alternation behaviour in rats: kynurenic acid attenuated deficits induced by MK-801 // Behavioural Brain Research. V. 168. № 1. P. 144–149.
  14. Hölter S.M., Tzschentke T.M., Schmidt W.J., 1996. Effects of amphetamine, morphine and dizocilpine (MK-801) on spontaneous alternation in the 8-arm radial maze // Behavioural Brain Research. V. 81. № 1. P. 53–59.
  15. Hughes R.N., Blight C.M., 1999. Algorithmic behaviour and spatial memory are used by two intertidal fish species to solve the radial maze // Animal Behaviour. V. 58. № 3. P. 601–613.
  16. Igata H., Sasaki T., Ikegaya Y., 2016. Early Failures Benefit Subsequent Task Performance // Scientific Reports. V. 6. № 1. P. 21293.
  17. Izumi A., Tsuchida J., Yamaguchi C., 2013. Spontaneous alternation behavior in common marmosets (Callithrix jacchus) // Journal of Comparative Psychology. V. 127. № 1. P. 76–81.
  18. Jones M.A., Mason G.J., Pillay N., 2011. Correlates of birth origin effects on the development of stereotypic behaviour in striped mice, Rhabdomys // Animal Behaviour. V. 82. № 1. P. 149–159.
  19. Krylov V.V., Chebotareva Y.V., Izyumov Y.G., 2019. Delayed consequences of the influence of simulated geomagnetic storms on roach Rutilus rutilus embryos // Journal of Fish Biology. V. 95. Issue 6. P. 1422–1429.
  20. Lahnsteiner F., Berger B., Weismann T., 2003. Effects of media, fertilization technique, extender, straw volume, and sperm to egg ratio on hatchability of cyprinid embryos, using cryopreserved semen // Theriogenology. V. 60. P. 829–841.
  21. Lalonde R., 2002. The neurobiological basis of spontaneous alternation // Neuroscience and Biobehavioral Reviews. V. 26. № 1. P. 91–104.
  22. Lennartz R.C., 2008. The role of extramaze cues in spontaneous alternation in a plus-maze // Learning and Behavior. V. 36. № 2. P. 138–144.
  23. Montgomery K.C., 1951. The relation between exploratory behavior and spontaneous alternation in the white rat // Journal of Comparative and Physiological Psychology. V. 44. № 6. P. 682–589.
  24. Montgomery K.C., 1952. Exploratory behavior and its relation to spontaneous alternation in a series of maze exposures // Journal of Comparative and Physiological Psychology. V. 45. № 1. P. 50–57.
  25. Mueller-Paul J., Wilkinson A., Hall G., Huber L., 2012. Response-stereotypy in the jewelled lizard (Timon lepidus) in a radial-arm maze // Herpetology Notes. V. 5. № 2. P. 243–246.
  26. Myhrer T., 2003. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks // Brain Research Reviews. V. 41. № 2. P. 268–287.
  27. Pankova N.A., Bolotovskiy A.A., Levin B.A., Nepomnyashchikh V.A., 2018. Organization of Three-Spined Stickleback Gasterosteus aculeatus L. (Gasterosteidae: Pisces) Exploratory Behavior in a Plus Maze // Inland Water Biology. V. 11. № 4. P. 485–491.
  28. Ramey P.A., Teichman E., Oleksiak J., Balci F., 2009. Spontaneous alternation in marine crabs: Invasive versus native species // Behavioural Processes. V. 82. № 1. P. 51–55.
  29. Red’ko V.G., Nepomnyashchikh V.A., Osipova E.A., 2015. Model of fish exploratory behavior in mazes // Biologically Inspired Cognitive Architectures. V. 13. № 1. P. 9–16.
  30. Roitblat H.L., Tham W., Golub L., 1982. Performance of Betta splendens in a radial arm maze // Animal Learning and Behavior. V. 10. № 1. P. 108–114.
  31. Salimov R., Salimova N., Shvets L., Shvets N., 1995. Effect of chronic piracetam on age-related changes of cross-maze exploration in mice // Pharmacology Biochemistry and Behavior. V. 52. № 3. P. 637–640.
  32. Sison M., Gerlai R., 2010. Associative learning in zebrafish (Danio rerio) in the plus maze // Behavioural Brain Research. V. 207. № 1. P. 99–104.
  33. Smirnov A.K., Smirnova E.S., 2020. Effect of Temperature on Locomotor Activity and Swimming Performance of Juvenile Roach Rutilus rutilus (Cyprinidae) // Journal of Ichthyology. V. 60, № 2. P. 315–324
  34. Tolman E.C., 1948. Cognitive maps in rats and men // Psychological Review. V. 55. № 4. P. 189–208.
  35. Weissburg M.J., Dusenbery D.B., 2002. Behavioral observations and computer simulations of blue crab movement to a chemical source in a controlled turbulent flow // Journal of Experimental Biology. V. 205. № 21. P. 3387–3398.
  36. Zheltova O.M., Nepomnyashchikh V.A., 2019. Organization of Exploratory Behavior in Danio rerio (Hamilton 1822, Cyprinidae) in a Maze // Biology Bulletin. V. 46. P. 1059–1064.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».