Organization of juvenile roach, RUTILUS RUTILUS (CYPRINIDAE) of different ages: exploratory behavior in a plus maze
- Authors: Pankova N.A.1, Osipova E.A.1
-
Affiliations:
- Papanin Institute of Inland Water Biology, Russian Academy of Sciences
- Issue: Vol 104, No 5 (2025)
- Pages: 53-60
- Section: ARTICLES
- URL: https://bakhtiniada.ru/0044-5134/article/view/304861
- DOI: https://doi.org/10.31857/S0044513425050066
- EDN: https://elibrary.ru/auwrqp
- ID: 304861
Cite item
Abstract
About the authors
N. A. Pankova
Papanin Institute of Inland Water Biology, Russian Academy of Sciences
Email: n.pankova.ibiw@yandex.ru
Borok, Nekouzskii raion, Yaroslavl oblast, 152742 Russia
E. A. Osipova
Papanin Institute of Inland Water Biology, Russian Academy of SciencesBorok, Nekouzskii raion, Yaroslavl oblast, 152742 Russia
References
- Михеев В.Н., 2006. Неоднородность среды и трофические отношения у рыб. М.: Наука. 191с.
- Рунион Р., 1982. Справочник по непараметрической статистике. Современный подход. Пер. с англ. М.: Финансы и статистика. 198 с.
- Balci F., Ramey-Balci P.A., Ruamps P., 2014. Spontaneous alternation and locomotor activity in three species of marine crabs: green crab (Carcinus maenas), blue crab (Callinectes sapidus), and fiddler crab (Uca pugnax) // Journal of Comparative Psychology. V. 128. № 1. P. 65–73.
- Badr A., El-Sayed M.F., Vornanen M., 2016. Effects of seasonal acclimatization on temperature dependence of cardiac excitability in the roach, Rutilus rutilus // Journal of Experimental Biology. Т. 219. № 10. С. 1495–1504.
- Benureau F., Oudeyer P.Y., 2015. Diversity-driven selection of exploration strategies in multi-armed bandits // Joint IEEE International Conference on Development and Epigenetic Robotics (ICDL – EpiRob). USA, Providence: IEEE. P. 135–142.
- Bögli S.Y., Huang M.Y.-Y., 2017. Spontaneous alternation behavior in larval zebrafish // Journal of Experimental Biology. V. 220. № 2. P. 171–173.
- Chiussi R., Díaz H., Rittschof D., Forward R.B., 2001. Orientation of the Hermit Crab Clibanarius Antillensis: Effects of Visual and Chemical Cues // Journal of Crustacean Biology. V. 21. Issue 3. P. 593–605.
- Dember W.N., Richman C.L., Charles L., 1989. Spontaneous Alternation Behavior. New York: Springer. 212 p.
- Dubreuil D., Tixier C., Dutrieux G., Edeline J.M., 2003. Does the radial arm maze necessarily test spatialmemory? // Neurobiology of learning and memory. V. 79. № 1. P. 109–117.
- Grossman L., Utterback E., Stewart A., Gaikwad S.L., Chung K.M. et al., 2011. Effects of piracetam on behavior and memory in adult zebrafish // Brain research bulletin. V. 85. № 1. P. 58–63.
- Haight J.L., Schroeder J.A., 2011. Spatial Cognition in Zebrafish //Zebrafish Models in Neurobehavioral Research. V. 52. P. 235–248.
- Harvey A.W., Bovell N.K-A., 2006. Spontaneous alternation behavior in Paramecium // Learning & Behavior. V. 34. Р. 361–365.
- Hliňák Z., Krejčí I., 2006. Spontaneous alternation behaviour in rats: kynurenic acid attenuated deficits induced by MK-801 // Behavioural Brain Research. V. 168. № 1. P. 144–149.
- Hölter S.M., Tzschentke T.M., Schmidt W.J., 1996. Effects of amphetamine, morphine and dizocilpine (MK-801) on spontaneous alternation in the 8-arm radial maze // Behavioural Brain Research. V. 81. № 1. P. 53–59.
- Hughes R.N., Blight C.M., 1999. Algorithmic behaviour and spatial memory are used by two intertidal fish species to solve the radial maze // Animal Behaviour. V. 58. № 3. P. 601–613.
- Igata H., Sasaki T., Ikegaya Y., 2016. Early Failures Benefit Subsequent Task Performance // Scientific Reports. V. 6. № 1. P. 21293.
- Izumi A., Tsuchida J., Yamaguchi C., 2013. Spontaneous alternation behavior in common marmosets (Callithrix jacchus) // Journal of Comparative Psychology. V. 127. № 1. P. 76–81.
- Jones M.A., Mason G.J., Pillay N., 2011. Correlates of birth origin effects on the development of stereotypic behaviour in striped mice, Rhabdomys // Animal Behaviour. V. 82. № 1. P. 149–159.
- Krylov V.V., Chebotareva Y.V., Izyumov Y.G., 2019. Delayed consequences of the influence of simulated geomagnetic storms on roach Rutilus rutilus embryos // Journal of Fish Biology. V. 95. Issue 6. P. 1422–1429.
- Lahnsteiner F., Berger B., Weismann T., 2003. Effects of media, fertilization technique, extender, straw volume, and sperm to egg ratio on hatchability of cyprinid embryos, using cryopreserved semen // Theriogenology. V. 60. P. 829–841.
- Lalonde R., 2002. The neurobiological basis of spontaneous alternation // Neuroscience and Biobehavioral Reviews. V. 26. № 1. P. 91–104.
- Lennartz R.C., 2008. The role of extramaze cues in spontaneous alternation in a plus-maze // Learning and Behavior. V. 36. № 2. P. 138–144.
- Montgomery K.C., 1951. The relation between exploratory behavior and spontaneous alternation in the white rat // Journal of Comparative and Physiological Psychology. V. 44. № 6. P. 682–589.
- Montgomery K.C., 1952. Exploratory behavior and its relation to spontaneous alternation in a series of maze exposures // Journal of Comparative and Physiological Psychology. V. 45. № 1. P. 50–57.
- Mueller-Paul J., Wilkinson A., Hall G., Huber L., 2012. Response-stereotypy in the jewelled lizard (Timon lepidus) in a radial-arm maze // Herpetology Notes. V. 5. № 2. P. 243–246.
- Myhrer T., 2003. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks // Brain Research Reviews. V. 41. № 2. P. 268–287.
- Pankova N.A., Bolotovskiy A.A., Levin B.A., Nepomnyashchikh V.A., 2018. Organization of Three-Spined Stickleback Gasterosteus aculeatus L. (Gasterosteidae: Pisces) Exploratory Behavior in a Plus Maze // Inland Water Biology. V. 11. № 4. P. 485–491.
- Ramey P.A., Teichman E., Oleksiak J., Balci F., 2009. Spontaneous alternation in marine crabs: Invasive versus native species // Behavioural Processes. V. 82. № 1. P. 51–55.
- Red’ko V.G., Nepomnyashchikh V.A., Osipova E.A., 2015. Model of fish exploratory behavior in mazes // Biologically Inspired Cognitive Architectures. V. 13. № 1. P. 9–16.
- Roitblat H.L., Tham W., Golub L., 1982. Performance of Betta splendens in a radial arm maze // Animal Learning and Behavior. V. 10. № 1. P. 108–114.
- Salimov R., Salimova N., Shvets L., Shvets N., 1995. Effect of chronic piracetam on age-related changes of cross-maze exploration in mice // Pharmacology Biochemistry and Behavior. V. 52. № 3. P. 637–640.
- Sison M., Gerlai R., 2010. Associative learning in zebrafish (Danio rerio) in the plus maze // Behavioural Brain Research. V. 207. № 1. P. 99–104.
- Smirnov A.K., Smirnova E.S., 2020. Effect of Temperature on Locomotor Activity and Swimming Performance of Juvenile Roach Rutilus rutilus (Cyprinidae) // Journal of Ichthyology. V. 60, № 2. P. 315–324
- Tolman E.C., 1948. Cognitive maps in rats and men // Psychological Review. V. 55. № 4. P. 189–208.
- Weissburg M.J., Dusenbery D.B., 2002. Behavioral observations and computer simulations of blue crab movement to a chemical source in a controlled turbulent flow // Journal of Experimental Biology. V. 205. № 21. P. 3387–3398.
- Zheltova O.M., Nepomnyashchikh V.A., 2019. Organization of Exploratory Behavior in Danio rerio (Hamilton 1822, Cyprinidae) in a Maze // Biology Bulletin. V. 46. P. 1059–1064.
Supplementary files
