Solution to contact problem between an elastic body and a rigid base covered with a layer of deformable material
- 作者: Namm R.V1, Tsoy G.I1
-
隶属关系:
- Computing Center of the Far Eastern Branch of the Russian Academy of Sciences
- 期: 卷 65, 编号 8 (2025)
- 页面: 1408–1422
- 栏目: Mathematical physics
- URL: https://bakhtiniada.ru/0044-4669/article/view/308334
- DOI: https://doi.org/10.31857/S0044466925080081
- EDN: https://elibrary.ru/VIZATE
- ID: 308334
如何引用文章
详细
作者简介
R. Namm
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences
Email: rnamm@yandex.ru
Khabarovsk, Russia
G. Tsoy
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences
Email: tsoy.dv@mail.ru
Khabarovsk, Russia
参考
- Hlavacek I., Haslinger J., Necas I., Lovishek J. Solution of variational inequalities in mechanics. New York: Springer-Verlag, 1988.
- Kikuchi N., Oden J.T. Contact problems in elasticity: a study of variational inequalities and finite element methods. Philadelphia: SIAM, 1988.
- Kravchuk A.S., Neittaanmaki P.J. Variational and quasi-variational inequalities in mechanics. Dordrecht: Springer, 2007.
- Dostal Z., Kozubek T., Sadowska M., Vondrak V. Scalable algorithms for contact problems. Cham: Springer, 2023.
- Glowinski R. Numerical methods for nonlinear variational problems. New York: Springer, 1984.
- Tremolieres R., Lions J.-L., Glowinski R. Numerical analysis of variational inequalities. Amsterdam: North-Holland, 1981.
- Haslinger J., Kucera R., Dostal Z. An algorithm for the numerical realization of 3D contact problems with Coulomb friction // J. Comput. Appl. Math. 2004. V. 164–165. P. 387–408.
- Haslinger J., Kucera R., Vlach O., Baniotopoulos C.C. Approximation and numerical realization of 3D quasistatic contact problems with Coulomb friction // Math. Comput. Simul. 2012. V. 82. P. 1936–1951.
- Namm R.V., Tsoy G.I. Duality analysis of the frictionless contact problem between linear elastic body and rigid-plastic foundation // Siberian Electronic Math. Rep. 2025. V. 22. №1. P. 274–293.
- Sofonea M., Migorski S. Variational-Hemivariational inequalities with applications. New York: Chapman & Hall, 2017.
- Sofonea M., Shillor M. Tykhonov well-posedness and convergence results for contact problems with unilateral constraints // Technologies. 2021. V. 9. №1. P. 1–25.
- Намм Р.В., Цой Г.И. Модифицированная схема двойственности для решения упругой задачи с трещиной // Сиб. журн. вычисл. матем. 2017. Т. 20. №1. С. 47–58.
- Namm R., Tsoy G. A modified duality scheme for solving a 3D elastic problem with a crack // Commun. Comput. Inf. Sci. 2019. V. 1090. P. 536–547.
- Namm R., Tsoy G. Modified duality methods for solving an elastic crack problem with Coulomb friction on the crack faces // Open Comput. Sci. 2020. V. 10. №1. P. 276–282.
- Namm R., Tsoy G., Vikhtenko E., Woo G. Variational method for solving contact problem of elasticity // CEUR Workshop Proc. 2021. V. 2930. P. 98–105.
- Namm R.V., Tsoy G.I. Solution of the static contact problem with Coulomb friction between an elastic body and a rigid foundation // J. Comput. Appl. Math. 2023. V. 419. P. 114725.
- Намм Р.В., Цой Г.И. Метод двойственности для решения 3D контактной задачи с трением // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. №7. С. 1225–1237.
- Golikov A.I., Evtushenko Yu.G. Generalized Newton's method for linear optimization problems with inequality constraints // Proc. Steklov Inst. Math. 2014. V. 284. P. 96–107.
- Mangasarian O.L. A generalized Newton method for absolute value equations // Optim. Lett. 2009. V. 3. P. 101–108.
- Bertsekas D.P. Constrained optimization and Lagrange multiplier methods. Nashua: Athena Scientific, 1996.
- Namm R.V., Woo G.-S., Xie S.-S., Yi S.-C. Solution of semicoercive Signorini problem based on a duality scheme with modified Lagrangian functional // J. Korean Math. Soc. 2012. V. 49. №4. P. 843–854.
- Gustafsson T., McBain G.D. scikit-fem: A Python package for finite element assembly // J. Open Source Softw. 2020. V. 5. №5. P. 2369.
- Сорокин А.А., Макогонов С.В., Королев С.П. Информационная инфраструктура для коллективной работы ученых Дальнего Востока России // Научно-техническая информация. Сер. 1: Организация и методика информационной работы. 2017. №12. C. 14–16.
补充文件
