DERIVATION OF LOWER ERROR BOUNDS FOR THE BILINEAR FINITE ELEMENT METHOD WITH A WEIGHT FOR THE ONE-DIMENSIONAL WAVE EQUATION

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study a three-level in time bilinear finite element method with weight for an initial-boundary value problem for the one-dimensional wave equation. We derive lower error estimates of orders (h + τ)2λ/3, 0 ⩽ λ ⩽ 3 in the L1 and W1,1 h norms. In them, each of the two initial functions or the free term in the equation belongs to Holder-type spaces of the corresponding orders of smoothness. They substantiate the accuracy in ¨ order of the corresponding known error estimates (from above) of the finite element method with a weight of the second-order approximation for second-order hyperbolic equations, as well as the impossibility of improving them with the maximum weakening of the degree of summability in the error norms and its maximum strengthening in the data norms. The derivation is based on the Fourier method.

作者简介

A. Zlotnik

Higher School of Economics University

Email: azlotnik@hse.ru
Moscow, Russia

参考

  1. Злотник А.А. Оценки скорости сходимости проекционно-сеточных методов для гиперболических уравнений второго порядка // В сб.: Вычисл. процессы и системы. Вып. 8. Под. ред. Г.И. Марчука. М.: Наука, 1991. С. 116–167.
  2. Злотник А.А. Проекционно-разностная схема для уравнения колебаний струны // Докл. АН СССР. 1979. Т. 245. № 2. С. 292–295.
  3. Злотник А.А. Проекционно-разностные схемы для нестационарных задач с негладкими данными. Дисс. канд. физ.-матем. наук. М.: МГУ им. М.В. Ломоносова, 1979.
  4. Обэн Ж.-П. Приближенное решение эллиптических краевых задач. М.: Мир, 1977.
  5. Brenner P., Thomee V., Wahlbin L.B. Besov Spaces and Applications to DifferenceMethods for Initial Value Rauch J. On convergence of the finite element method for the wave equation // SIAM J. Numer. Anal. 1985. V. 22. № 2. P. 245–249.
  6. Haase M.C. Extra smoothness requirements for Galerkin methods for the wave equation // SIAM J. Numer. Anal. 1996. V. 33. № 5. P. 1962–1968.
  7. Zlotnik A., Kireeva O. Practical error analysis for the bilinear FEM and finite-difference scheme for the 1D wave equation with non-smooth data // Math. Model. Anal. 2018. V. 23. № 3. P. 359–378.
  8. Zlotnik A., Kireeva O. On compact 4th order finite-difference schemes for the wave equation // Math. Model. Anal. 2021. V. 26. № 3. P. 479–502.
  9. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. 9-е изд. М.: Лаборатория знаний, 2020.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».