COLLOCATION-VARIATIONAL APPROACHES TO SOLVE THE VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND NUMERICALLY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Linear Volterra equations of the first kind are considered. A class of problems that have a single solution is identified, and collocation-variational methods are proposed to solve them numerically. The essence of these algorithms is that the approximate solution is found at the nodes of a uniform grid (the collocation condition) that yield an underdetermined system of linear algebraic equations. The system thus obtained is supplemented by the condition of minimum of the objective function, which approximates the squared norm of the approximate solution. As a result, a quadratic programming problem is obtained, viz. the objective function (the squared norm of the approximate solution) is quadratic, and the constraints (the collocation conditions) are equalities. This problem is solved by the method of Lagrange multipliers. Sufficiently simple third-order methods are considered in detail. The calculation results for test problems are given. Further development of this approach to solve other classes of integral equations numerically is discussed.

About the authors

M. V. Bulatov

V. M. Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Science

Email: mvbul@icc.ru
Irkutsk, Russia

References

  1. Краснов М.Л. Интегральные уравнения. М.: Наука, 1975.
  2. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986.
  3. Апарцин А.С. Неклассические уравнения Вольтерра I рода: теория и численные методы. Новосибирск: Наука, 1999.
  4. Brunner H. Volterra Integral Equations: An Introduction to Theory and Applications. Cambridge: Cambridge Univer. Press, 2017. 402 p.
  5. Brunner H. Collocation methods for Volterra integral and related functional equations. Cambridge: Univer. Press, 2004.
  6. Brunner H., van der Houwen P.J. The numerical solution of Volterra equations, CWI Monographs 3. Amsterdam: North Holland, 1986.
  7. Linz P. Analytical and numerical methads for Volterra equations. SIAM, Philadelphia, 1985.
  8. Тен Мен Ян. Приближенное решение линейных интегральных уравнений Вольтерра 1 рода. Дисс... канд. физ.-матем. наук, Иркутск, 1985.
  9. Верлань А.Ф., Сизиков В.С. Интегральные уравнения: методы, алгоритмы, программы. Справочное пособие. Киев: Наук. думка, 1978.
  10. Bulatov M., Solovarova L. Collocation-variation difference schemes with several collocation points for differentialalgebraic equations // Appl. Numer. Math. 2020. V. 149. P. 153–163. doi: 10.1016/j.apnum.2019.06.014.
  11. Булатов М.В., Маркова Е.В. Коллокационно-вариационные подходы к решению интегральных уравнений Вольтерра I рода // Ж. вычисл. матем. и матем. физ. 2022. Т. 62.№1. С. 105–112.
  12. Бахвалов Н.С. Численные методы. М.: Наука, 1975.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».