ACCELERATED ALGORITHMS FOR GROWING SEGMENTS FROMIMAGE REGIONS
- Autores: Murashov D.M.1
-
Afiliações:
- FRC CSC RAS
- Edição: Volume 64, Nº 11 (2024)
- Páginas: 2212-2226
- Seção: Computer science
- URL: https://bakhtiniada.ru/0044-4669/article/view/277212
- DOI: https://doi.org/10.31857/S0044466924110164
- EDN: https://elibrary.ru/KFMQQV
- ID: 277212
Citar
Resumo
Bibliografia
- Ikonomatakis N., Plataniotis K. N., Zervakis M., Venetsanopoulos A. N. Region growing and region merging image segmentation // Proc. of 13th Internat. Conference on Digital Signal Proc., Santorini, Greece. 1997. Vol. 1. P. 299–302. doi: 10.1109/ICDSP.1997.628077.
- Peng B., Zhang L., Zhang D. Automatic Image Segmentation by Dynamic Region Merging // IEEE Transactions on Image Proc.. 2011. Vol. 20(12). P. 3592–3605. doi: 10.1109/TIP.2011.2157512.
- Ko H.Y., Ding J.J. Adaptive growing and merging algorithm for image segmentation // 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, Korea (South). 2016. P. 1–10. doi: 10.1109/APSIPA.2016.7820762.
- Chamalis T., Likas A. Region merging for image segmentation based on unimodality tests // 2017 3rd Internat. Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan. 2017. P. 381–384. doi: 10.1109/ICCAR.2017.7942722.
- Tang R., Song W., Guan X., Ge H., Kong D. Dam Burst: A region-merging-based image segmentation method // ArXiv. 2020. abs/2003.04797. https://doi.org/10.48550/arXiv.2003.04797.
- Kharinov M. Stable Segmentation of Digital Image //arXiv preprint arXiv:1208.2655. 2012.
- Shuanhu Di, Miao Liao, Yuqian Zhao, Yang Li, Yezhan Zeng. Image superpixel segmentation based on hierarchical multi-level LI-SLIC // Optics & Laser Technology. 2021. Vol. 135. 106703. https://doi.org/10.1016/j.optlastec.2020.106703.
- Liu T., Seyedhosseini M., Tasdizen T. Image Segmentation Using Hierarchical Merge Tree // IEEE Transactions on Image Proc. 2016. Vol. 25(10). P. 4596–4607. doi: 10.1109/TIP.2016.2592704.
- Чочиа П.А. Сегментация изображений на основе анализа расстояний в пространстве признаков // Автометрия. 2014. №4. С. 97–110.
- Альмияхи О.М., Цветков В.Ю., Конопелько В.К., Гусева О.В. Адаптивное двухпороговое квантование и сегментация изображений на основе разделения и слияния областей // Докл. БГУИР. 2016. №7(101). С. 183–187.
- Calderero F., Marques F. Region Merging Techniques Using Information Theory Statistical Measures // IEEE Transactions on Image Proc. 2010. Vol. 19(6). P. 1567–1586. doi: 10.1109/TIP.2010.2043008.
- Rigau J., Feixas M., Sbert S. An information theoretic framework for image segmentation // 2004 Internat. Conference on Image Proc. ICIP ’04. Singapore. 2004. Vol. 2. P. 1193–1196. doi: 10.1109/ICIP.2004.1419518.
- Bardera A., Rigau J., Boada I., Feixas M., Sbert S. Image Segmentation Using Information Bottleneck Method // IEEE Transactions on Image Processing. 2009. Vol. 18(7). P. 1601–1612. doi: 10.1109/TIP.2009.2017823.
- Mirsadeghi S. E., Royat A., Rezatofighi H. Unsupervised Image Segmentation by Mutual Information Maximization and Adversarial Regularization // IEEE Robotics and Automation Letters. 2021. Vol. 6(4). P. 6931–6938. doi: 10.1109/LRA.2021.3095311.
- Tishby N. Pereira F. C., Bialek W. The information bottleneck method // Proc. of the 37th Annual Allerton Conference on Communication, Control and Computing. 1999. P. 368–377.
- Lv X., Persello C., Huang X., Ming D., Stein A. DeepMerge: Deep Learning-Based Region-Merging for Image Segmentation //arXiv preprint arXiv:2305.19787v2[cs.CV]. – 2024. https://doi.org/10.48550/arXiv.2305.19787
- Murashov D. Theoretical-information quality model for image segmentation // Procedia Engng. 2017. Vol. 201. P. 239–248.
- Murashov D. Application of Information Redundancy Measure To Image Segmentation. In: Strijov V., Ignatov D., Vorontsov K. (eds) Intelligent Data Processing. IDP 2016. Communications in Computer and Information Science. Springer, Cham. 2019. Vol. 794. P. 125–139. DOI: https://doi.org/10.1007/978-3-030-35400-8_9
- Murashov D.M. An Information Model for Digital Image Segmentation // Pattern Recognit. Image Anal. 2021. Vol. 31. P. 632–645.
- Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Susstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods // IEEE Trans. Pattern Anal. Mach. Intell. 2012. Vol. 34(11). P. 2274–2282.
- Ланге А.М., Ланге М.М., Парамонов С.В. О соотношении взаимной информации и вероятности ошибки в задаче классификации данных // Ж. вычисл. матем. и матем. физ. 2021. T. 61.№7. С. 1192–1205.
- Cover T.M, Thomas J.A. Elements of Information Theory.Wiley Series in Telecommunications. 2-nd ed. JohnWiley & Sons, Inc. 2006. 774 P.
- Meila M. Comparing clusterings: an axiomatic view // In: Proc. of the 22nd Int. Conf. on “Machine learning (ACM, 2005)”, Bonn, Germany, August 7 – 11 2005. ACM, New York, NY, USA. 2005. P. 577–584.
- Arbelaez P., Maire M., Fowlkes C., Malik J. Contour Detection and Hierarchical Image Segmentation // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011. Vol. 33(5), P. 898–916. doi: 10.1109/TPAMI.2010.161
- Martin D., Fowlkes C.,Tal D., Malik J.Adatabase of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics // Proc. “8th Int. Conf. on Comput. Vis. (ICCV 2001)”, Vancouver, BC, Canada, 07–14 July 2001. IEEE. 2001. Vol. 2. P. 416–423.
Arquivos suplementares
