APPLICATION OF CABARET AND WENO SCHEMES FOR SOLVING THE NONLINEAR TRANSPORT EQUATION IN THE MODELING OF SOUND WAVE PROPAGATION IN THE ATMOSPHERE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The most convenient model for describing the phenomenon of shock wave propagation in the atmosphere is the extended Burgers equation. This work investigates the influence of the numerical scheme on the results of solving the equation, which accounts for the nonlinear nature of shock wave propagation in the atmosphere. This equation is a key component of the extended Burgers equation and defines the transformation of the perturbed pressure profile during its propagation. Two numerical schemes were applied for the solution: CABARET and WENO, which are quasi-monotonic finite difference schemes that allow for solutions without significant numerical oscillations. An analysis of the applicability of these schemes for solving the considered problem was conducted.

Sobre autores

P. Mishchenko

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: mischenko.polina.16@gmail.com
Novosibirsk, Russia

T. Himon

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Novosibirsk, Russia

V. Kolotilov

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS; M. A. Lavrentiev Institute of Hydrodynamics SB RAS

Novosibirsk, Russia

A. Kudryavtseva

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Novosibirsk Russia

Bibliografia

  1. Чернышев С.Л. Звуковой удар. М.: Наука, 2011.
  2. Cleveland R.O. Propagation of sonic booms through a real, stratified atmosphere : PhD thesis. Univer. Texas at Austin, 1995.
  3. Blackstock D.T. Nonlinear acoustics (theoretical) // Am. Inst. Phys. Handbook. 1972. V. 3.
  4. Rallabhandi S.K. Advanced sonic boom prediction using the augmented Burgers equation // J. Aircraft. 2011. V. 48. №4. P 1245-1253.
  5. Qiao J.L. et al. Development of sonic boom prediction code for supersonic transports Based on augmented Burgers equation // AIAA Aviation 2019 Forum. 2019. P. 3571.
  6. Kanamori M. et al. Comparison of simulated sonic boom in stratified atmosphere with flight test measurements // AIAA J. 2018. V. 56. № 7. P. 2743-2755.
  7. Lonzaga J.B. Recent Enhancements to NASA PCBoom Sonic Boom Propagation Code // AIAA Aviation 2019 Forum. 2019. P. 3386.
  8. Pilon A.R. Spectrally accurate prediction of sonic boom signals // AIAA J. 2007. V. 45. № 9. P. 2149-2156.
  9. Jianling Q. et al. Far-field sonic boom prediction considering atmospheric turbulence effects: An improved approach // Chin. J. Aeronaut. 2022. V. 35. № 9. P. 208-225.
  10. Thomas C.L. Extrapolation of wind-tunnel sonic boom signatures without use of a Whitham F-function // NASA SP-255. 1970. P 205-217.
  11. Холодов А.С. Численные методы решения уравнений и систем гиперболического типа // Энциклопедия низкотемпературной плазмы (сер. Б). 2008. Т. 1. Ч. 2. С. 141-174.
  12. Куликовский А.Г., Погорелов Н.В., Семёнов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2012.
  13. Самарский А.А., Гулин А.В. Численные методы математической физики: Учеб. пособие по прикл. математике. Науч. мир, 2003.
  14. Зюзина Н.А., Ковыркина О.А., Остапенко В.В. О монотонности схемы CABARET, аппроксимирующей скалярный закон сохранения со знакопеременным характеристическим полем и выпуклой функцией потоков // Матем. моделирование. 2018. Т. 30. № 5. С. 76-98.
  15. Головизнин В.М. и др. Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов // М.: Изд-во Моск. ун-та, 2013.
  16. Jiang G.S., Shu C.W. Efficient implementation of weighted ENO schemes // J. Comput. Phys. 1996. V. 126. № 1. P. 202-228.
  17. Courant R., Friedrichs K., Lewy H. On the partial difference equations of mathematical physics // IBM J. Res. and Development. 1967. V. 11. № 2. P. 215-234.
  18. Pierce A.D., Acoustics A. Introduction to its physical principles and applications // Acoustic. Soc. Am. and Am. Inst. Phys. 1981. P. 122.
  19. United States Committee on Extension to the Standard Atmosphere et al. US standard atmosphere. — National Oceanic and Amospheric [sic] Administration, National Aeronautics and Space Administration, US Air Force, 1962.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».