Target-point interpolation of a program control in the approach problem

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

For a no Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russianlinear controlled system, a fixed-time approach problem is considered in which the target point location becomes known only at the start of motion. According to the proposed solution method, node resolving program controls corresponding to a finite collection of target points from the set of their admissible locations are computed in advance and a refined control for the target point given at the start of motion is determined via linear interpolation of the node controls. The procedure for designing such a resolving control is formulated in the form of two algorithms, one of which is run before the start of the motion, and the other is executed in real time while the system is moving. The error in the transfer of the system’s state to the target point by applying these algorithms is estimated. As an example, we consider the approach problem for a modified Dubins car model and a target point about which only a compact set of its admissible locations is known before the start of motion.

Толық мәтін

ВВЕДЕНИЕ

Одной из особенностей теории управления (см. [1]) является то, что вычисление разрешающего программного управления в задачах о сближении или позиционной стратегии в дифференциальных играх (см. [2], [3]) зачастую представляет собой длительный вычислительный процесс, в ходе которого вычисляются так называемые множества достижимости и интегральные воронки. Это обстоятельство представляет собой известную проблему, особенно в случае, когда условия задачи содержат некоторые неопределенности, которые невозможно выяснить до начального момента времени (см. [4]–[7]). Например, согласно работе [8], решение задачи управления с неполностью известным начальным условием состоит из трех подзадач:

  1. сбор информации о динамической системе,
  2. применение полученных сведений для устранения неопределенности,
  3. переход к этапу активного управления.

В этой схеме первый и второй этапы могут быть выполнены, в том числе, с помощью применения кратковременного пробного управления (см. [6], [7]). Однако, стоит обратить внимание па переход к третьему этапу, так как после устранения неопределенности осуществить мгновенное построение разрешающего управления при уже начавшемся движении некоторой динамической системы будет практически невозможно.

Также можно рассмотреть вполне естественную задачу, когда требуется быстрое реагирование динамической системы на обнаружение целевого множества в наблюдаемой области фазового пространства. Вторая ситуация, приводящая к схожим условиям задачи, это обработка сигналов коррекции относительно целевого множества, поступающих непосредственно во время движения управляемой системы.

В настоящей статье в качестве решения предлагается заранее построить разрешающие управления, соответствующие нескольким возможным положениям целевой точки, а для промежуточных положений целевой точки воспользоваться формулами линейной интерполяции. Отметим, что в общем случае линейная комбинация управлений, соответствующих разным “поводырям” (по терминологии метода экстремального прицеливания Н.Н. Красовского из [9], [10]) , может привести к слишком большой погрешности. Из-за этого в настоящей работе применяется схема, которая минимизирует диаметр интегральных воронок, содержащих ячейки сетки, наложенной на множество возможных положений целевой точки.

Ранее в работе [11] была рассмотрена задача линейной интерполяции программного управления по скалярному параметру, а в [12] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  по векторному параметру. В [13] была, в частности, рассмотрена интерполяция оптимального управления по пространственной переменной для систем с обратной связью. Кроме того, запатентован метод интерполяции в автоматическом программировании (см. [14]). К данной тематике также примыкают работы по интерполяции структуры нелинейных управляемых систем с помощью линейных (см. [15], |16|) и билинейных (см. [17], [18]) систем.

2. ПОСТАНОВКА ЗАДАЧИ

Пусть на конечном промежутке времени [t0,ϑ] задана управляемая система

dx t dt =f t,x t ,u t ,t t 0 ,ϑ ,x t 0 = x (0) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiaadsgaieqacaWF4b WaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaamizaiaadshaaaGa aGypaiaa=zgadaqadaqaaiaa=rhacaaISaGaa8hEamaabmaabaGaam iDaaGaayjkaiaawMcaaiaaiYcacaWF1bWaaeWaaeaacaWG0baacaGL OaGaayzkaaaacaGLOaGaayzkaaGaaGilaiaaywW7caWG0bGaeyicI4 8aaeWaaeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabeg9a kbGaayjkaiaawMcaaiaaiYcacaaMe8UaaGjbVlaaysW7caWF4bWaae WaaeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGa aGypaiaa=HhadaahaaWcbeqaaiaaiIcacaaIWaGaaGykaaaakiaaiY caaaa@61AF@  (1)

где t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0baaaa@3698@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  время, x (0) n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaaGimaiaaiMcaaaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaaaaa@4651@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  начальное состояние системы, x(t) n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWF4bGaaGikaiaadshaca aIPaGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39ga iqaacqGFDeIudaahaaWcbeqaaiaad6gaaaaaaa@465A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  фазовый вектор системы, f: t 0 ,ϑ × n ×P n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWFMbGaaGOoamaadmaaba GaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacqaHrpGsaiaawUfa caGLDbaacqGHxdaTtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD 3BaGabaiab+1risnaaCaaaleqabaGaamOBaaaakiabgEna0kaadcfa cqWIMgsycqGFDeIudaahaaWcbeqaaiaad6gaaaaaaa@525D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  вектор-функция динамики системы, u(t): t 0 ,ϑ P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWF1bGaaGikaiaadshaca aIPaGaaGOoamaadmaabaGaamiDamaaBaaaleaacaaIWaaabeaakiaa iYcacqaHrpGsaiaawUfacaGLDbaacqWIMgsycaWGqbaaaa@4288@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  измеримая вектор-функция управления, значения которой принадлежат компакту P p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGqbGaeyOGIW8efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqa aiaadchaaaaaaa@4449@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbaaaa@3692@  и p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGWbaaaa@3694@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  натуральные числа.

Будем предполагать, что правая часть f(,,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWFMbGaaGikaiabgwSixl aaiYcacqGHflY1caaISaGaeyyXICTaaGykaaaa@403F@  системы (1) удовлетворяет следующим условиям.

Условие C1. Вектор-функция f(t,x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWFMbGaaGikaiaadshaca aISaGaa8hEaiaaiYcacaWF1bGaaGykaaaa@3C49@  определена и непрерывна на области t 0 ,ϑ × n ×P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaWadaqaaiaadshadaWgaaWcba GaaGimaaqabaGccaaISaGaaGjbVlabeg9akbGaay5waiaaw2faaiab gEna0orr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8 xhHi1aaWbaaSqabeaacaWGUbaaaOGaey41aqRaamiuaaaa@4E49@ .

Условие C2. На любом компакте D t 0 ,ϑ × n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGebGaeyOGIW8aamWaaeaaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabeg9akbGaay5waiaa w2faaiabgEna0orr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVb aceaGae8xhHi1aaWbaaSqabeaacaWGUbaaaaaa@4C8B@  функция f(t,x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWFMbGaaGikaiaadshaca aISaGaa8hEaiaaiYcacaWF1bGaaGykaaaa@3C49@  удовлетворяет условию Липшица по x с некоторой конечной и положительной постоянной Липшица L=L(D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGmbGaaGypaiaadYeacaaIOa GaamiraiaaiMcaaaa@3A36@ , т.е.

f t, x ,u f t, x ,u L x x , t, x D, t, x D,uP, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaafmaabaGaaKOzamaabm aabaGaamiDaiaaiYcacaqI4bWaaSbaaSqaaiabgEHiQaqabaGccaaI SaGaaKyDaaGaayjkaiaawMcaaiabgkHiTiaajAgadaqadaqaaiaads hacaaISaGaaKiEamaaCaaaleqabaGaey4fIOcaaOGaaGilaiaajwha aiaawIcacaGLPaaaaiaawMa7caGLkWoatuuDJXwAK1uy0HMmaeHbfv 3ySLgzG0uy0HgiuD3BaGabaiab=1NkekaadYeadaqbdaqaaiaajIha daWgaaWcbaGaey4fIOcabeaakiabgkHiTiaajIhadaahaaWcbeqaai abgEHiQaaaaOGaayzcSlaawQa7aiaaiYcaaeaadaqadaqaaiaadsha caaISaGaaKiEamaaBaaaleaacqGHxiIkaeqaaaGccaGLOaGaayzkaa GaeyicI4SaamiraiaaiYcacaaMe8UaaGjbVlaaysW7daqadaqaaiaa dshacaaISaGaaKiEamaaCaaaleqabaGaey4fIOcaaaGccaGLOaGaay zkaaGaeyicI4SaamiraiaaiYcacaaMe8UaaGjbVlaajwhacqGHiiIZ caWGqbGaaGilaaaaaa@7B9F@

где MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaimaacqWFLicucqGHflY1cqWFLi cuaaa@3A2C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  евклидова норма вектора в n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySL gzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaaaaa@4176@ .

Условие C3. Выполняется условие подлинейного роста по фазовой переменной с некоторой конечной и положительной постоянной γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeo7aNbaa@3A2C@ , т.е.

f(t,x,u) γ 1+ x , t,x,u t 0 ,ϑ × n ×P. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaafmaabaGaaK OzaiaaiIcacaWG0bGaaGilaiaajIhacaaISaGaaKyDaiaaiMcaaiaa wMa7caGLkWoacqGHKjYOcqaHZoWzcqGHflY1daqadaqaaiaaigdacq GHRaWkdaqbdaqaaiaajIhaaiaawMa7caGLkWoaaiaawIcacaGLPaaa caaISaGaaGjbVlaaysW7daqadaqaaiaadshacaaISaGaaKiEaiaaiY cacaqI1baacaGLOaGaayzkaaGaeyicI48aamWaaeaacaWG0bWaaSba aSqaaiaaicdaaeqaaOGaaGilaiabeg9akbGaay5waiaaw2faaiabgE na0orr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aaWbaaSqabeaacaWGUbaaaOGaey41aqRaamiuaiaai6caaaa@727B@

Замечание 2.1. Под допустимым управлением u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI1bGaaGikaiaadshacaaIPa aaaa@38FD@ , t[ t 0 ,ϑ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bGaeyicI4SaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeqy0dOKaaGyxaaaa@3E2F@ , мы понимаем измеримую по Лебегу на [ t 0 ,ϑ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca aIWaaabeaakiaaiYcacqaHrpGscaaIDbaaaa@3BB2@  вектор-функцию со значениями из P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGqbaaaa@3674@ . Условий C1, C2 и C3 достаточно, чтобы каждому допустимому управлению u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI1bGaaGikaiaadshacaaIPa aaaa@38FD@  соответствовало движение x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGikaiaadshacaaIPa aaaa@3900@ , являющееся решением системы (1) в классе абсолютно непрерывных функций (см. [19, §2.1]). При этом производная х˙(t) понимается в обобщенном смысле, и для нее выполняется формула Ньютона MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ Лейбница (см., например, [20, гл. 2, §4]).

Замечание 2.2. В силу условия C3 существует некоторый достаточно большой компакт D[ t 0 ,ϑ]× n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGebGaeyOGIWSaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeqy0dOKaaGyxaiabgEna 0orr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi 1aaWbaaSqabeaacaWGUbaaaaaa@4C65@ , в котором заведомо содержатся всевозможные движения системы (1) вместе со всеми вспомогательными конструкциями для построения разрешающих управлений. В дальнейшем будем всюду использовать постоянную Липшица L=L(D) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGmbGaaGypaiaadYeacaaIOa GaamiraiaaiMcaaaa@3A36@  и другие конструкции именно для этой области D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGebaaaa@3668@ .

Замечание 2.3. Учитывая условие C1, получаем, что модуль непрерывности

ω δ =max f t,x, u * f t,x, u : t,x, u , t,x, u D×P, u u δ ,δ 0, , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaHjpWDdaqadaqaaiabes7aKb GaayjkaiaawMcaaiaai2daciGGTbGaaiyyaiaacIhadaGadaqaamaa fmaabaGaamOzamaabmaabaGaamiDaiaaiYcacaWH4bGaaGilaiaahw hadaWgaaWcbaGaaGOkaaqabaaakiaawIcacaGLPaaacqGHsislcaWG MbWaaeWaaeaacaWG0bGaaGilaiaahIhacaaISaGaaCyDamaaCaaale qabaGaey4fIOcaaaGccaGLOaGaayzkaaaacaGLjWUaayPcSdGaaGOo amaabmaabaGaamiDaiaaiYcacaWH4bGaaGilaiaahwhadaWgaaWcba Gaey4fIOcabeaaaOGaayjkaiaawMcaaiaaiYcacaaMe8UaaGjbVpaa bmaabaGaamiDaiaaiYcacaWH4bGaaGilaiaahwhadaahaaWcbeqaai abgEHiQaaaaOGaayjkaiaawMcaaiabgIGiolaadseacqGHxdaTcaWG qbGaaGilaiaaysW7caaMe8+aauWaaeaacaWH1bWaaSbaaSqaaiabgE HiQaqabaGccqGHsislcaWH1bWaaWbaaSqabeaacqGHxiIkaaaakiaa wMa7caGLkWoacqGHKjYOcqaH0oazaiaawUhacaGL9baacaaISaGaaG zbVlabes7aKjabgIGiopaabmaabaGaaGimaiaaiYcacqGHEisPaiaa wIcacaGLPaaacaaISaaaaa@863E@

удовлетворяет предельному соотношению ω(δ)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaHjpWDcaaIOaGaeqiTdqMaaG ykaiabgoziVkaaicdaaaa@3D1F@  при δ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaH0oazcqGHtgYRcaaIWaaaaa@39ED@ .

Условие C4. Для любых точек (t,x)D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIOaGaamiDaiaaiYcacaqI4b GaaGykaiabgIGiolaadseaaaa@3C03@  и векторов uP MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI1bGaeyicI4Saamiuaaaa@38F8@  функция f(t,x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqIMbGaaGikaiaadshacaaISa GaaKiEaiaaiYcacaqI1bGaaGykaaaa@3C5D@  является дважды непрерывно дифференцируемой по совокупности компонент векторных переменных x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4baaaa@36A2@  и u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI1baaaa@369F@  с ограниченными вторыми частными производными, т.е.

2 f t,x,u x i x j M 2 ,i,j= 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaGqabOGaa8NzamaabmaabaGaamiDaiaa iYcacaqI4bGaaGilaiaajwhaaiaawIcacaGLPaaaaeaacqGHciITca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaa caWGQbaabeaaaaaakiaawMa7caGLkWoacqGHKjYOcaWGnbWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaaywW7caWGPbGaaGilaiaadQgacaaI 9aWaa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGilaaaa@5562@   2 f(t,x,u) u i u j M 2 ,i,j= 1,p ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaOGaaKOzaiaaiIcacaWG0bGaaGilaiaa dIhacaaISaGaamyDaiaaiMcaaeaacqGHciITcaWG1bWaaSbaaSqaai aadMgaaeqaaOGaeyOaIyRaamyDamaaBaaaleaacaWGQbaabeaaaaaa kiaawMa7caGLkWoacqGHKjYOcaWGnbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaiaaywW7caWGPbGaaGilaiaadQgacaaI9aWaa0aaaeaacaaI XaGaaGilaiaadchaaaGaaGilaaaa@552E@

2 f t,x,u u i x j M 2 ,i= 1,p ¯ ,j= 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaGqabOGaa8NzamaabmaabaGaamiDaiaa iYcacaWG4bGaaGilaiaadwhaaiaawIcacaGLPaaaaeaacqGHciITca WG1bWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIyRaamiEamaaBaaaleaa caWGQbaabeaaaaaakiaawMa7caGLkWoacqGHKjYOcaWGnbWaaSbaaS qaaiaaikdaaeqaaOGaaGilaiaaywW7caWGPbGaaGypamaanaaabaGa aGymaiaaiYcacaWGWbaaaiaaiYcacaaMe8UaamOAaiaai2dadaqdaa qaaiaaigdacaaISaGaamOBaaaacaaISaaaaa@5A1E@

где x=( x 1 ,, x n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bGaaGypaiaaiIcacaWG4b WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWa aSbaaSqaaiaad6gaaeqaaOGaaGykaaaa@3F6E@ , u=( u 1 ,, u p ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH1bGaaGypaiaaiIcacaWG1b WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWG1bWa aSbaaSqaaiaadchaaeqaaOGaaGykaaaa@3F67@ , постоянная M 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGnbWaaSbaaSqaaiaaikdaae qaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGccqWF +PsHcaaIWaaaaa@4371@  определяется видом функции f(,,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGMbGaaGikaiaayIW7cqGHfl Y1caaMi8UaaGilaiaayIW7cqGHflY1caaMi8UaaGilaiaayIW7cqGH flY1caaMi8UaaGykaaaa@499F@ , областями D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGebaaaa@3668@  и P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGqbaaaa@3674@ .

Оговорим информационные условия, в рамках которых осуществляется управление системой (1).

Условие I1. Заблаговременно до момента начала движения t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaicdaae qaaaaa@377E@  управляющему лицу известно только ограниченное множество возможных целевых точек M n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGnbGaeyOGIW8efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqa aiaad6gaaaaaaa@4444@  и приближенное значение x * ( t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIQa aaaOGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3ADB@  начального состояния системы x( t 0 )= x (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGikaiaadshadaWgaa WcbaGaaGimaaqabaGccaaIPaGaaGypaiaahIhadaahaaWcbeqaaiaa iIcacaaIWaGaaGykaaaaaaa@3E04@  с погрешностью δ x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaH0oazdaWgaaWcbaGaamiEaa qabaaaaa@386D@ , т.е. выполнено неравенство

x * t 0 x t 0 δ x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaaiaahIhadaahaaWcbe qaaiaaiQcaaaGcdaqadaqaaiaadshadaWgaaWcbaGaaGimaaqabaaa kiaawIcacaGLPaaacqGHsislcaWH4bWaaeWaaeaacaWG0bWaaSbaaS qaaiaaicdaaeqaaaGccaGLOaGaayzkaaaacaGLjWUaayPcSdGaeyiz ImQaeqiTdq2aaSbaaSqaaiaadIhaaeqaaOGaaGOlaaaa@48C9@  

Условие I2. Целевая точка x (f) M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWF4bWaaWbaaSqabeaaca aIOaGaamOzaiaaiMcaaaGccqGHiiIZcaWGnbaaaa@3B7F@  сообщается управляющему лицу только в момент t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaicdaae qaaaaa@377E@  начала движения системы (1).

Условие I3. Лицо, управляющее системой, не в состоянии производить большой объем вычислений в реальном времени (а именно, не может мгновенно вычислять множества достижимости пиксельным методом). Также объем заранее вычисленной информации для быстрого построения разрешающих управлений не должен быть слишком большим.

Сформулируем для системы (1) задачу о сближении с заранее неизвестной целевой точкой.

Задача 1. Пусть система (1) удовлетворяет условиям C1–C4, а ее управление производится в рамках информационных условий I1–I3. Требуется определить существование разрешающего программного управления u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWF1bGaaGikaiaadshaca aIPaaaaa@38FD@ , переводящего движение системы (1) в момент ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaHrpGsaaa@3747@  в малую окрестность точки x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWF4bWaaWbaaSqabeaaca aIOaGaamOzaiaaiMcaaaaaaa@391F@  (заданной в момент t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaicdaae qaaaaa@377E@  ), и, в случае его существования, сконструировать его.

3. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ О СБЛИЖЕНИИ

Прежде чем сформулировать алгоритм решения задачи, состоящий из двух частей, введем некоторые вспомогательные обозначения.

Под диаметром diam(M) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqGKbGaaeyAaiaabggacaqGTb GaaGikaiaad2eacaaIPaaaaa@3B7D@  произвольного множества M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGnbaaaa@3671@  (находящегося, как минимум, в метрическом пространстве) мы будем понимать точную верхнюю грань расстояний между любыми двумя точками из M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGnbaaaa@3671@ .

Обозначим через Ω (δ) () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHPoWvdaahaaWcbeqaaiaaiI cacqaH0oazcaaIPaaaaOGaaGikaiaayIW7cqGHflY1caaMi8UaaGyk aaaa@413F@  отображение, “прореживающее” множество, т.е. любому ограниченному множеству A k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGbbGaeyOGIW8efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqa aiaadUgaaaaaaa@4435@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGRbGaeyicI48efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@42BE@ , оно сопоставляет конечное множество A ˜ = Ω (δ) (A) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadgeaaiaawoWaai aai2dacqqHPoWvdaahaaWcbeqaaiaaiIcacqaH0oazcaaIPaaaaOGa aGikaiaadgeacaaIPaaaaa@3EE8@ , состоящее, по возможности, из меньшего количества его точек и обладающее свойством

d(A, A ˜ )δ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGKbGaaGikaiaadgeacaaISa WaaacaaeaacaWGbbaacaGLdmaacaaIPaGaeyizImQaeqiTdqMaaGil aaaa@3F01@

где d(A, A ˜ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGKbGaaGikaiaadgeacaaISa WaaacaaeaacaWGbbaacaGLdmaacaaIPaaaaa@3AF1@  есть хаусдорфово расстояние между множествами A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGbbaaaa@3665@  и A ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadgeaaiaawoWaaa aa@3727@ . Способы построения такого “прореженного” множества A ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadgeaaiaawoWaaa aa@3727@  приведены в [21, c. 549].

Обозначим P ˜ = Ω ( Δ u ) (P) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadcfaaiaawoWaai aai2dacqqHPoWvdaahaaWcbeqaaiaaiIcacqqHuoardaWgaaqaaiaa dwhaaeqaaiaaiMcaaaGccaaIOaGaamiuaiaaiMcaaaa@3FE2@ , где Δ u >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamyDaa qabaGccaaI+aGaaGimaaaa@39B7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  достаточно малая постоянная, выбранная из соображений оптимального соотношения между точностью и производительностью вычислений.

Пусть P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGabaiab=9q8qbaa@40FD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  множество всех равномерных разбиений всех отрезков. Определим отображение F:P× n ×P n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGabaiab=ftigjaaiQdacqWFpepucqGHxdaTtuuD JXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risnaaCa aaleqabaGaamOBaaaakiabgEna0kaadcfacqWIMgsycqGFDeIudaah aaWcbeqaaiaad6gaaaaaaa@57B0@ , действующее по правилу

F Γ ¯ , x ,u = x (N) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGabaiab=ftignaabmaabaWaa0aaaeaacqqHtoWr aaGaaGilaiaajIhadaWgaaWcbaGaey4fIOcabeaakiaaiYcacaqI1b aacaGLOaGaayzkaaGaaGypaiaajIhadaahaaWcbeqaaiaaiIcacaWG obGaaGykaaaakiaaiYcaaaa@4CCA@

где N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGobGaeyicI48efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@42A1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  натуральное число, Γ ¯ ={ τ 0 = t * , τ 1 ,, τ N = t * } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiabfo5ahbaacaaI9a GaaG4Eaiabes8a0naaBaaaleaacaaIWaaabeaakiaai2dacaWG0bWa aSbaaSqaaiaaiQcaaeqaaOGaaGilaiabes8a0naaBaaaleaacaaIXa aabeaakiaaiYcacqWIMaYscaaISaGaeqiXdq3aaSbaaSqaaiaad6ea aeqaaOGaaGypaiaadshadaahaaWcbeqaaiaaiQcaaaGccaaI9baaaa@4ABD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  равномерное разбиение некоторого отрезка [ t * , t * ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca aIQaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaiQcaaeqaaOGaaGyx aaaa@3BE7@ , точка x (N) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaamOtaiaaiMcaaaaaaa@3905@  вычисляется с помощью рекуррентных соотношений

x (0) = x * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaaGimaiaaiMcaaaGccaaI9aGaaKiEamaaBaaaleaacaaIQaaabeaa kiaaiYcaaaa@3C62@

x (k+1) = x (k) + τ k+1 τ k f τ k + τ k+1 2 , x (k) + τ k+1 τ k 2 f τ k , x (k) ,u , k= 0,N1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaaiaajIhadaahaaWcbeqaai aaiIcacaWGRbGaey4kaSIaaGymaiaaiMcaaaGccaaI9aGaaKiEamaa CaaaleqabaGaaGikaiaadUgacaaIPaaaaOGaey4kaSYaaeWaaeaacq aHepaDdaWgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaeyOeI0Ia eqiXdq3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaGjbVl aadAgadaqadaqaamaalaaabaGaeqiXdq3aaSbaaSqaaiaadUgaaeqa aOGaey4kaSIaeqiXdq3aaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabe aaaOqaaiaaikdaaaGaaGilaiaaysW7caqI4bWaaWbaaSqabeaacaaI OaGaam4AaiaaiMcaaaGccqGHRaWkdaWcaaqaaiabes8a0naaBaaale aacaWGRbGaey4kaSIaaGymaaqabaGccqGHsislcqaHepaDdaWgaaWc baGaam4AaaqabaaakeaacaaIYaaaaiabgwSixlaadAgadaqadaqaai abes8a0naaBaaaleaacaWGRbaabeaakiaaiYcacaqI4bWaaWbaaSqa beaacaaIOaGaam4AaiaaiMcaaaGccaaISaGaamyDaaGaayjkaiaawM caaaGaayjkaiaawMcaaiaaiYcaaeaacaWGRbGaaGypamaanaaabaGa aGimaiaaiYcacaWGobGaeyOeI0IaaGymaaaacaaISaaaaaa@7BB3@

представляющих собой явный метод Рунге MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ Кутты второго порядка (см. [22], [23]).

Определим еще одно отображение X ˜ :×× 2 n ×P 2 n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaai aaiQdatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab =1risjabgEna0kab=1risjabgEna0kaaikdadaahaaWcbeqaaiab=1 risnaaCaaabeqaaiaad6gaaaaaaOGaey41aq7efv3ySLgznfgDOfda rCqr1ngBPrginfgDObYtUvgaiuaacqGFpepucqWIMgsycaaIYaWaaW baaSqabeaacqWFDeIudaahaaqabeaacaWGUbaaaaaaaaa@5D5B@  следующим образом:

X ˜ t * , t * , X * , Γ ¯ := x X * uP F Γ[ t * , t * ],x,u , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aabmaabaGaamiDamaaCaaaleqabaGaaGOkaaaakiaaiYcacaWG0bWa aSbaaSqaaiaaiQcaaeqaaOGaaGilaiaadIfadaWgaaWcbaGaaGOkaa qabaGccaaISaWaa0aaaeaacqqHtoWraaaacaGLOaGaayzkaaGaaGOo aiaai2dadaWfqaqaamaataaabeWcbeqab0GaeSOkIufaaSqaaiaajI hacqGHiiIZcaWGybWaaSbaaeaacaaIQaaabeaaaeqaaOWaaCbeaeaa daWeaaqabSqabeqaniablQIivbaaleaacaqI1bGaeyicI4Saamiuaa qabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaakiab =ftignaabmaabaGaeu4KdCKaaG4waiaadshadaWgaaWcbaGaaGOkaa qabaGccaaISaGaamiDamaaCaaaleqabaGaaGOkaaaakiaai2facaaI SaGaaKiEaiaaiYcacaqI1baacaGLOaGaayzkaaGaaGilaaaa@6664@

где Γ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiabfo5ahbaaaaa@3718@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  равномерное разбиение отрезка [ t * , t * ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca aIQaaabeaakiaaiYcacaWG0bWaaWbaaSqabeaacaaIQaaaaOGaaGyx aaaa@3BE8@ , концы которого определены первыми двумя аргументами отображения.

Завершив введение необходимых обозначений, сформулируем вычислительный метод решения задачи 1 в виде двух алгоритмов. Первый алгоритм содержит громоздкие вычисления, которые выполняются заблаговременно до начала движения системы (1), второй алгоритм применяется непосредственно в процессе движения системы (1) в режиме реального времени.

Алгоритм 1

1. Выберем достаточно большое натуральное число N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGobaaaa@3672@  и введем равномерное разбиение Γ= t 0 , t 1 ,, t i ,, t N =ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHtoWrcaaI9aWaaiWaaeaaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshadaWgaaWcbaGa aGymaaqabaGccaaISaGaeSOjGSKaaGilaiaadshadaWgaaWcbaGaam yAaaqabaGccaaISaGaeSOjGSKaaGilaiaadshadaWgaaWcbaGaamOt aaqabaGccaaI9aGaeqy0dOeacaGL7bGaayzFaaaaaa@4A32@  временного промежутка [ t 0 ,ϑ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca aIWaaabeaakiaaiYcacqaHrpGscaaIDbaaaa@3BB2@  с диаметром Δ t = t i+1 t i = N 1 (ϑ t 0 ),i= 0,N1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamiDaa qabaGccaaI9aGaamiDamaaBaaaleaacaWGPbGaey4kaSIaaGymaaqa baGccqGHsislcaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaad6 eadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHflY1caaIOaGaeqy0 dOKaeyOeI0IaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaISa GaaGjcVlaayIW7caWGPbGaaGypamaanaaabaGaaGimaiaaiYcacaWG obGaeyOeI0IaaGymaaaaaaa@54EE@ . Кроме того, выберем натуральное число N 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGobWaaSbaaSqaaiaaigdaae qaaaaa@3759@ , и на каждом отрезке разбиения [ t i , t i+1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca WGPbaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaadMgacqGHRaWkcaaI Xaaabeaakiaai2faaaa@3DF8@  введем свое подразбиение:

Γ i+1 = t i,0 = t i , t i,1 = t i + Δ t N 1 ,, t i,k = t i +k Δ t N 1 ,, t i, N 1 = t i+1 ,i= 0,N1 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaamyAai abgUcaRiaaigdaaeqaaOGaaGypamaacmaabaGaamiDamaaBaaaleaa caWGPbGaaGilaiaaicdaaeqaaOGaaGypaiaadshadaWgaaWcbaGaam yAaaqabaGccaaISaGaaGjcVlaadshadaWgaaWcbaGaamyAaiaaiYca caaIXaaabeaakiaai2dacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaey 4kaSYaaSaaaeaacqqHuoardaWgaaWcbaGaamiDaaqabaaakeaacaWG obWaaSbaaSqaaiaaigdaaeqaaaaakiaaiYcacaaMi8UaeSOjGSKaaG ilaiaayIW7caWG0bWaaSbaaSqaaiaadMgacaaISaGaam4AaaqabaGc cqGH9aqpcaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaam4Aai abgwSixpaalaaabaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaaGcbaGa amOtamaaBaaaleaacaaIXaaabeaaaaGccaaISaGaeSOjGSKaaGilai aayIW7caWG0bWaaSbaaSqaaiaadMgacaaISaGaamOtamaaBaaabaGa aGymaaqabaaabeaakiaai2dacaWG0bWaaSbaaSqaaiaadMgacqGHRa WkcaaIXaaabeaaaOGaay5Eaiaaw2haaiaaiYcacaaMf8UaamyAaiaa i2dadaqdaaqaaiaaicdacaaISaGaamOtaiabgkHiTiaaigdaaaGaaG Olaaaa@7C1F@

2. Выберем достаточно малую постоянную Δ x >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamiEaa qabaGccaaI+aGaaGimaaaa@39BA@  и вычислим аппроксимации множеств достижимости по следующей итерационной процедуре:

X ˜ 0 = x * ( t 0 ) , X ˜ k+1 = Ω ( Δ x ) X ˜ t k+1 , t k , X ˜ k , Γ k ,k= 0,N1 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aaBaaaleaacaaIWaaabeaakiaai2dadaGadaqaaiaajIhadaahaaWc beqaaiaaiQcaaaGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaaki aaiMcaaiaawUhacaGL9baacaaISaGaaGjbVlaaysW7daaiaaqaaiaa dIfaaiaawoWaamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGcca aI9aGaeuyQdC1aaWbaaSqabeaacaaIOaGaeuiLdq0aaSbaaeaacaWG 4baabeaacaaIPaaaaOWaaeWaaeaadaaiaaqaaiaadIfaaiaawoWaam aabmaabaGaamiDamaaBaaaleaacaWGRbGaey4kaSIaaGymaaqabaGc caaISaGaamiDamaaBaaaleaacaWGRbaabeaakiaaiYcadaaiaaqaai aadIfaaiaawoWaamaaBaaaleaacaWGRbaabeaakiaaiYcacqqHtoWr daWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPa aacaaISaGaaGjbVlaaysW7caWGRbGaaGypamaanaaabaGaaGimaiaa iYcacaWGobGaeyOeI0IaaGymaaaacaaIUaaaaa@6B45@

При построении конечных множеств X ˜ k ,k= 1,N ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aaBaaaleaacaWGRbaabeaakiaaiYcacaaMi8Uaam4Aaiaai2dadaqd aaqaaiaaigdacaaISaGaamOtaaaaaaa@3EB7@ , для каждой точки x ¯ (k) X ˜ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaam4AaiaaiMcaaaGccqGHiiIZdaaiaaqaaiaadIfa aiaawoWaamaaBaaaleaacaWGRbaabeaaaaa@3D7E@  мы будем запоминать “родительскую” точку x ¯ (k1) X ˜ k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaam4AaiabgkHiTiaaigdacaaIPaaaaOGaeyicI48a aacaaeaacaWGybaacaGLdmaadaWgaaWcbaGaam4AaiabgkHiTiaaig daaeqaaaaa@40CE@  и управляющий вектор u ¯ (k) P ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajwhaaaWaaWbaaS qabeaacaaIOaGaam4AaiaaiMcaaaGccqGHiiIZdaaiaaqaaiaadcfa aiaawoWaaaaa@3C57@ , для которых выполнено соотношение x ¯ (k) =F Γ k , x ¯ (k1) , u ¯ (k) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaam4AaiaaiMcaaaGccaaI9aWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiqaacqWFXeIrdaqadaqaaiabfo5ahn aaBaaaleaacaWGRbaabeaakiaaiYcadaqdaaqaaiaajIhaaaWaaWba aSqabeaacaaIOaGaam4AaiabgkHiTiaaigdacaaIPaaaaOGaaGilam aanaaabaGaaKyDaaaadaahaaWcbeqaaiaaiIcacaWGRbGaaGykaaaa aOGaayjkaiaawMcaaaaa@5314@ , где обозначено x ¯ (0) = x * ( t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaaGimaiaaiMcaaaGccaaI9aGaaCiEamaaCaaaleqa baGaaGOkaaaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaG ykaaaa@3F0A@ .

3. Если евклидово расстояние ρ(M, X ˜ N )= min xM min y X ˜ N xy> Δ x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaHbpGCcaaIOaGaamytaiaaiY cadaaiaaqaaiaadIfaaiaawoWaamaaBaaaleaacaWGobaabeaakiaa iMcacaaI9aWaaCbeaeaacaqGTbGaaeyAaiaab6gaaSqaaiaadIhacq GHiiIZcaWGnbaabeaakiaayIW7daWfqaqaaiaab2gacaqGPbGaaeOB aaWcbaGaamyEaiabgIGiopaaGaaabaGaamiwaaGaay5adaWaaSbaae aacaWGobaabeaaaeqaaGWaaOGae8xjIaLaaKiEaiabgkHiTiaajMha cqWFLicucaaI+aGaeuiLdq0aaSbaaSqaaiaadIhaaeqaaaaa@5662@ , то заключаем, что разрешающее программное управление, переводящее движение системы (1) на любую точку из M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGnbaaaa@3671@  в момент ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaHrpGsaaa@3747@  с приемлемой точностью нашим методом построить не представляется возможным, и завершаем решение задачи о сближении.

Если хаусдорфово отклонение h(M, X ˜ N )= max xM min y X ˜ N xy Δ x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGObGaaGikaiaad2eacaaISa WaaacaaeaacaWGybaacaGLdmaadaWgaaWcbaGaamOtaaqabaGccaaI PaGaaGypamaaxababaGaaeyBaiaabggacaqG4baaleaacaWG4bGaey icI4SaamytaaqabaGccaaMi8+aaCbeaeaacaqGTbGaaeyAaiaab6ga aSqaaiaadMhacqGHiiIZdaaiaaqaaiaadIfaaiaawoWaamaaBaaaba GaamOtaaqabaaabeaaimaakiab=vIiqjaajIhacqGHsislcaqI5bGa e8xjIa1efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacq GF9PcHcqqHuoardaWgaaWcbaGaamiEaaqabaaaaa@601A@ , то заключаем, что задача 1 разрешима для любой точки x (f) M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaGccqGHiiIZcaWGnbaaaa@3B7F@ , которая будет сообщена в момент t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaicdaae qaaaaa@377E@ .

В остальных случаях мы не сможем гарантировать решение задачи 1 с приемлемой точностью для того x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391F@ , которое будет сообщено управляющему лицу в момент t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaicdaae qaaaaa@377E@ .

4. Обозначим через Δ f >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamOzaa qabaGccaaI+aGaaGimaaaa@39A8@  достаточно малую постоянную. В качестве конечного множества M ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaad2eaaiaawoWaaa aa@3733@  выберем такое множество точек x (f,j) j=1 N f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaGadaqaaiaajIhadaahaaWcbe qaaiaaiIcacaWGMbGaaGilaiaadQgacaaIPaaaaaGccaGL7bGaayzF aaWaa0baaSqaaiaadQgacaaI9aGaaGymaaqaaiaad6eadaWgaaqaai aadAgaaeqaaaaaaaa@417C@ , чтобы любая возможная целевая точка x (f) M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaGccqGHiiIZcaWGnbaaaa@3B79@  была внутри “своего” n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbaaaa@3692@  -мерного куба K j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaadQgaae qaaaaa@378A@  с вершинами

x (f,j ,±,±,,± n ) = x 1 (f,j) ± Δ f 2 , x 2 (f,j) ± Δ f 2 ,, x n (f,j) ± Δ f 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaGGOa GaamOzaiaacYcacaWGQbWaaKbaaeaacaGGSaGaeyySaeRaaiilaiab gglaXkaacYcacqWIMaYscaGGSaGaeyySaelameaacaWGUbaaliaawY a7aiaacMcaaaGccaaI9aWaaeWaaeaacaqI4bWaa0baaSqaaiaaigda aeaacaaIOaGaamOzaiaaiYcacaWGQbGaaGykaaaakiabgglaXoaala aabaGaeuiLdq0aaSbaaSqaaiaadAgaaeqaaaGcbaGaaGOmaaaacaaI SaGaaKiEamaaDaaaleaacaaIYaaabaGaaGikaiaadAgacaaISaGaam OAaiaaiMcaaaGccqGHXcqSdaWcaaqaaiabfs5aenaaBaaaleaacaWG MbaabeaaaOqaaiaaikdaaaGaaGilaiablAciljaaiYcacaqI4bWaa0 baaSqaaiaad6gaaeaacaaIOaGaamOzaiaaiYcacaWGQbGaaGykaaaa kiabgglaXoaalaaabaGaeuiLdq0aaSbaaSqaaiaadAgaaeqaaaGcba GaaGOmaaaaaiaawIcacaGLPaaacaaISaaaaa@6F24@

которые должны быть либо из X ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aaBaaaleaacaWGUbaabeaaaaa@385D@ , либо хотя бы удовлетворять соотношению

h( x (f,j,±,±,,±) , X ˜ n ) Δ x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGObGaaGikaiaajIhadaahaa WcbeqaaiaaiIcacaWGMbGaaGilaiaadQgacaaISaGaeyySaeRaaGil aiabgglaXkaaiYcacaaMi8UaeSOjGSKaaGilaiaayIW7cqGHXcqSca aIPaaaaOGaaGilamaaGaaabaGaamiwaaGaay5adaWaaSbaaSqaaiaa d6gaaeqaaOGaaGykaiabgsMiJkabfs5aenaaBaaaleaacaWG4baabe aakiaai6caaaa@528A@  (2)

Замечание 3.1. Если выделение конечного множества M ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaad2eaaiaawoWaaa aa@3733@  указанным способом невозможно по причине “неудобной” геометрии M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGnbaaaa@3671@  и X ˜ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aaBaaaleaacaWGobaabeaaaaa@383D@ , то можно модифицировать наши алгоритмы, соотнеся “неудобные” точки к ближайшим кубам и выразив их в дальнейшем через невыпуклые линейные комбинации вершин (см. [12]), перейдя, таким образом, от интерполяции к экстраполяции. При этом оценка погрешности перевода состояния системы в целевую точку несколько ухудшится.

5. Для каждого куба K j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaadQgaae qaaaaa@378A@  с центром x (f,j) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiYcacaWGQbGaaGykaaaaaaa@3AC4@ , j= 1, N f ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGQbGaaGypamaanaaabaGaaG ymaiaaiYcacaWGobWaaSbaaSqaaiaadAgaaeqaaaaaaaa@3AC1@ , выбираем соответствующее сужение значений управляющего вектора P j (t)P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGqbGbaqbadaWgaaWcbaGaam OAaaqabaGccaaIOaGaamiDaiaaiMcacqGHckcZcaWGqbaaaa@3CE3@  так, чтобы K j X j ϑ, t 0 , x (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaadQgaae qaaOGaeyOGIWSabmiwayaauaWaaSbaaSqaaiaadQgaaeqaaOWaaeWa aeaacqaHrpGscaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiY cacaqI4bWaaWbaaSqabeaacaaIOaGaaGimaiaaiMcaaaaakiaawIca caGLPaaaaaa@458C@ , где X j ϑ, t 0 , x (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGybGbaqbadaWgaaWcbaGaam OAaaqabaGcdaqadaqaaiabeg9akjaaiYcacaWG0bWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaajIhadaahaaWcbeqaaiaaiIcacaaIWaGaaG ykaaaaaOGaayjkaiaawMcaaaaa@419B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  множество достижимости системы (1) в момент ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaHrpGsaaa@3747@  из начальной позиции t 0 , x (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqadaqaaiaadshadaWgaaWcba GaaGimaaqabaGccaaISaGaaKiEamaaCaaaleqabaGaaGikaiaaicda caaIPaaaaaGccaGLOaGaayzkaaaaaa@3D20@ , порожденное всевозможными кусочно-постоянными управлениями со значениями из сужения P j (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGqbGbaqbadaWgaaWcbaGaam OAaaqabaGccaaIOaGaamiDaiaaiMcaaaa@3A12@  при t[ t 0 ,ϑ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bGaeyicI4SaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeqy0dOKaaGyxaaaa@3E2F@ . При этом выбор таких сужений мы производим таким образом, чтобы максимальный диаметр временных сечений сужений Δ u = max j= 1, N f ¯ max t[ t 0 ,ϑ] diam( P j (t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamyDaa qabaGccaaI9aWaaybuaeqaleaacaWGQbGaaGypamaanaaabaGaaGym aiaaiYcacaWGobWaaSbaaeaacaWGMbaabeaaaaaabeGcbaGaciyBai aacggacaGG4baaamaawafabeWcbaGaamiDaiabgIGiolaaiUfacaWG 0bWaaSbaaeaacaaIWaaabeaacaaISaGaeqy0dOKaaGyxaaqabOqaai Gac2gacaGGHbGaaiiEaaaacaqGKbGaaeyAaiaabggacaqGTbGaaGik aiaadcfadaWgaaWcbaGaamOAaaqabaGccaaIOaGaamiDaiaaiMcaca aIPaaaaa@56A2@  был, по возможности, минимальным.

6. Для каждого j= 1, N f ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGQbGaaGypamaanaaabaGaaG ymaiaaiYcacaWGobWaaSbaaSqaaiaadAgaaeqaaaaaaaa@3AC1@  и для каждой вершины x (f,j,±,±,,±) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiYcacaWGQbGaaGilaiabgglaXkaaiYcacqGHXcqScaaI SaGaaGjcVlablAciljaaiYcacaaMi8UaeyySaeRaaGykaaaaaaa@47AA@  выбираем из X ˜ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aaBaaaleaacaWGobaabeaaaaa@383D@  по одной точке x ¯ N,j,±,±,,± MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaadaqadaqaaiaad6eacaaISaGaamOAaiaaiYcacqGHXcqScaaI SaGaeyySaeRaaGilaiaayIW7cqWIMaYscaaISaGaaGjcVlabgglaXc GaayjkaiaawMcaaaaaaaa@47C7@ , ближайшей к x f,j,±,±,,± MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaadaqada qaaiaadAgacaaISaGaamOAaiaaiYcacqGHXcqScaaISaGaeyySaeRa aGilaiaayIW7cqWIMaYscaaISaGaaGjcVlabgglaXcGaayjkaiaawM caaaaaaaa@47CE@  и порожденной сеточным алгоритмом, аппроксимирующего воздействие некоторого кусочно-постоянного управления, которое обозначим через u ¯ j,±,±,,± (t) P j (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaadwhaaaWaaWbaaS qabeaadaqadaqaaiaadQgacaaISaGaeyySaeRaaGilaiabgglaXkaa iYcacaaMi8UaeSOjGSKaaGilaiaayIW7cqGHXcqSaiaawIcacaGLPa aaaaGccaaIOaGaamiDaiaaiMcacqGHiiIZceWGqbGbaqbadaWgaaWc baGaamOAaaqabaGccaaIOaGaamiDaiaaiMcaaaa@4E94@  , t[ t 0 ,ϑ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bGaeyicI4SaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeqy0dOKaaGyxaaaa@3E2F@ .

Алгоритм 2

1. Определяем куб K j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaadQgaae qaaaaa@378A@ , содержащий заданную целевую точку x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391F@ .

2. Представляем радиус-вектор x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391F@  в виде линейной комбинации

x (f) = λ 1 λ 2 λ n x f,j,,,, +(1 λ 1 ) λ 2 λ n x f,j,+,,, + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaGccaaI9aGaeq4UdW2aaSbaaSqaaiaaigdaaeqa aOGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeS47IWKaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaKiEamaaCaaaleqabaWaaeWaaeaacaWG MbGaaGilaiaadQgacaaISaGaeyOeI0IaaGilaiabgkHiTiaaiYcacq WIMaYscaaISaGaeyOeI0cacaGLOaGaayzkaaaaaOGaey4kaSIaaGik aiaaigdacqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaIPa Gaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeS47IWKaeq4UdW2aaSba aSqaaiaad6gaaeqaaOGaaKiEamaaCaaaleqabaWaaeWaaeaacaWGMb GaaGilaiaadQgacaaISaGaey4kaSIaaGilaiabgkHiTiaaiYcacqWI MaYscaaISaGaeyOeI0cacaGLOaGaayzkaaaaaOGaey4kaSIaeS47IW eaaa@6CF8@

+(1 λ 1 )(1 λ 2 )(1 λ n ) x f,j,+,+,,+ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqWIVlctcqGHRaWkcaaIOaGaaG ymaiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaabeaakiaaiMcacaaI OaGaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaaIYaaabeaakiaaiM cacqWIVlctcaaIOaGaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaWG UbaabeaakiaaiMcacaqI4bWaaWbaaSqabeaadaqadaqaaiaadAgaca aISaGaamOAaiaaiYcacqGHRaWkcaaISaGaey4kaSIaaGilaiablAci ljaaiYcacqGHRaWkaiaawIcacaGLPaaaaaGccaaISaaaaa@5855@

где коэффициенты 0 λ k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIWaWefv3ySLgznfgDOjdary qr1ngBPrginfgDObcv39gaiqaacqWF9PcHcqaH7oaBdaWgaaWcbaGa am4AaaqabaGccqWF9PcHcaaIXaaaaa@46F0@  при k= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGRbGaaGypamaanaaabaGaaG ymaiaaiYcacaWGUbaaaaaa@39CB@ .

3. В качестве искомого разрешающего программного управления используем функцию

u ^ (t)= λ 1 λ 2 λ n u ¯ j,,,, (t)+ +(1 λ 1 ) λ 2 λ n u ¯ j,+,,, (t)++ +(1 λ 1 )(1 λ 2 )(1 λ n ) u ¯ j,+,+,,+ (t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaaHaaabaGaaKyDaaGaay PadaGaaGikaiaadshacaaIPaGaaGypaiabeU7aSnaaBaaaleaacaaI XaaabeaakiabeU7aSnaaBaaaleaacaaIYaaabeaakiabl+UimjabeU 7aSnaaBaaaleaacaWGUbaabeaakmaanaaabaGaaKyDaaaadaahaaWc beqaamaabmaabaGaamOAaiaaiYcacqGHsislcaaISaGaeyOeI0IaaG ilaiablAciljaaiYcacqGHsislaiaawIcacaGLPaaaaaGccaaIOaGa amiDaiaaiMcacqGHRaWkaeaacqGHRaWkcaaMe8UaaGikaiaaigdacq GHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaIPaGaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaeS47IWKaeq4UdW2aaSbaaSqaaiaad6 gaaeqaaOWaa0aaaeaacaqI1baaamaaCaaaleqabaWaaeWaaeaacaWG QbGaaGilaiabgUcaRiaaiYcacqGHsislcaaISaGaeSOjGSKaaGilai abgkHiTaGaayjkaiaawMcaaaaakiaaiIcacaWG0bGaaGykaiabgUca Riabl+UimjabgUcaRaqaaiabgUcaRiaaiIcacaaIXaGaeyOeI0Iaeq 4UdW2aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiIcacaaIXaGaeyOe I0Iaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabl+UimjaaiI cacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGyk amaanaaabaGaaKyDaaaadaahaaWcbeqaamaabmaabaGaamOAaiaaiY cacqGHRaWkcaaISaGaey4kaSIaaGilaiablAciljaaiYcacqGHRaWk aiaawIcacaGLPaaaaaGccaaIOaGaamiDaiaaiMcacaaIUaaaaaa@9413@

4. ОЦЕНКА ПОГРЕШНОСТИ

Лемма 4.1. Пусть m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGTbaaaa@3691@  и n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbaaaa@3692@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  натуральные числа, постоянные 0 λ k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIWaWefv3ySLgznfgDOjdary qr1ngBPrginfgDObcv39gaiqaacqWF9PcHcqaH7oaBdaWgaaWcbaGa am4AaaqabaGccqWF9PcHcaaIXaaaaa@46F0@  при k= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGRbGaaGypamaanaaabaGaaG ymaiaaiYcacaWGUbaaaaaa@39CB@ , векторы x=( x 1 , x 2 ,, x n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGypaiaaiIcacaWG4b WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadIhadaWgaaWcbaGaaGOm aaqabaGccaaISaGaeSOjGSKaaGilaiaadIhadaWgaaWcbaGaamOBaa qabaGccaaIPaaaaa@4215@  и y=( y 1 , y 2 ,, y n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI5bGaaGypaiaaiIcacaWG5b WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMhadaWgaaWcbaGaaGOm aaqabaGccaaISaGaeSOjGSKaaGilaiaadMhadaWgaaWcbaGaamOBaa qabaGccaaIPaaaaa@4219@  из n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySL gzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaaaaa@4176@ , функция f: n m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqIMbGaaGOoamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaWbaaSqabeaa caWGUbaaaOGaeSOPHeMae8xhHi1aaWbaaSqabeaacaWGTbaaaaaa@4722@ , f C 2 ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqIMbGaeyicI4Saam4qamaaCa aaleqabaGaaGOmaaaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaakiaaiM caaaa@4715@  и все ее вторые частные производные ограничены некоторой постоянной m 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGTbWaaSbaaSqaaiaaikdaae qaaOGaaGOpaiaaicdaaaa@3905@ , т.е.

2 f x 1 , x 2 ,, x n x i x j m 2 ,i,j= 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaOGaaKOzamaabmaabaGaamiEamaaBaaa leaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaO GaaGilaiablAciljaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaaGc caGLOaGaayzkaaaabaGaeyOaIyRaamiEamaaBaaaleaacaWGPbaabe aakiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaaGccaGLjWUa ayPcSdGaeyizImQaamyBamaaBaaaleaacaaIYaaabeaakiaaiYcaca aMf8UaamyAaiaaiYcacaaMi8UaamOAaiaai2dadaqdaaqaaiaaigda caaISaGaamOBaaaacaaIUaaaaa@5BF4@

Тогда

f λ 1 x 1 + 1 λ 1 y 1 , λ 2 x 2 + 1 λ 2 y 2 ,, λ n x n + 1 λ n y n ( b 1 , b 2 ,, b n ) B 2 n k=1 n b k λ k + 1 b k 1 λ k × ×f b 1 x 1 + 1 b 1 y 1 , b 2 x 2 + 1 b 2 y 2 ,, b n x n + 1 b n y n 3 8 m 2 xy 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaafeaabaGaaKOzaaGaay zcSdWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0 Iaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaamyE amaaBaaaleaacaaIXaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaG OmaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGjb VpaabmaabaGaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaaIYaaabe aaaOGaayjkaiaawMcaaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaI SaGaeSOjGSKaaGilaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadI hadaWgaaWcbaGaamOBaaqabaGccqGHRaWkdaqadaqaaiaaigdacqGH sislcqaH7oaBdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaca WG5bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyOeI0ca baGaeyOeI0YaaabuaeqaleaacaaIOaGaamOyamaaBaaabaGaaGymaa qabaGaaGilaiaadkgadaWgaaqaaiaaikdaaeqaaiaaiYcacqWIMaYs caaISaGaamOyamaaBaaabaGaamOBaaqabaGaaGykaiabgIGiolaadk eadaqhaaqaaiaaikdaaeaacaWGUbaaaaqab0GaeyyeIuoakmaaraha beWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHpis1aOWaae WaaeaacaWGIbWaaSbaaSqaaiaadUgaaeqaaOGaeq4UdW2aaSbaaSqa aiaadUgaaeqaaOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaamOyam aaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaaigdacqGHsisl cqaH7oaBdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacqGHxd aTaeaacqGHxdaTcaqIMbWaauGaaeaadaqadaqaaiaadkgadaWgaaWc baGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS YaaeWaaeaacaaIXaGaeyOeI0IaamOyamaaBaaaleaacaaIXaaabeaa aOGaayjkaiaawMcaaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaISa GaamOyamaaBaaaleaacaaIYaaabeaakiaadIhadaWgaaWcbaGaaGOm aaqabaGccqGHRaWkcaaMe8+aaeWaaeaacaaIXaGaeyOeI0IaamOyam aaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaadMhadaWgaaWc baGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadkgadaWgaaWcba GaamOBaaqabaGccaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSYa aeWaaeaacaaIXaGaeyOeI0IaamOyamaaBaaaleaacaWGUbaabeaaaO GaayjkaiaawMcaaiaadMhadaWgaaWcbaGaamOBaaqabaaakiaawIca caGLPaaaaiaawQa7aiabgsMiJcqaaiabgsMiJoaalaaabaGaaG4maa qaaiaaiIdaaaGaamyBamaaBaaaleaacaaIYaaabeaakmaafmaabaGa aKiEaiabgkHiTiaajMhaaiaawMa7caGLkWoadaahaaWcbeqaaiaaik daaaGccaaISaaaaaa@CF96@  (3)

где через B 2 n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGcbWaa0baaSqaaiaaikdaae aacaWGUbaaaaaa@3842@  обозначено множество всех векторов b=( b 1 , b 2 ,, b n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqIIbGaaGypaiaaiIcacaWGIb WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGOm aaqabaGccaaISaGaeSOjGSKaaGilaiaadkgadaWgaaWcbaGaamOBaa qabaGccaaIPaaaaa@41BD@  длины n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbaaaa@3692@ , координаты b k k=1 n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaGadaqaaiaadkgadaWgaaWcba Gaam4AaaqabaaakiaawUhacaGL9baadaqhaaWcbaGaam4Aaiaai2da caaIXaaabaGaamOBaaaaaaa@3D6F@  которых принимают значения только 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIWaaaaa@3659@  или 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIXaaaaa@365A@ .

Доказательство. Воспользуемся методом математической индукции по размерности n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbaaaa@3692@ . Для доказательства базы индукции рассмотрим случай n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbGaaGypaiaaigdaaaa@3814@ , а именно, докажем, что

f λ 1 x 1 + 1 λ 1 y 1 λ 1 f x 1 1 λ 1 f y 1 3 8 m 2 x 1 y 1 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaaiaahAgadaqadaqaai abeU7aSnaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGym aaqabaGccqGHRaWkdaqadaqaaiaaigdacqGHsislcqaH7oaBdaWgaa WcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWG5bWaaSbaaSqaaiaa igdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaaGjbVlabeU7aSnaaBa aaleaacaaIXaaabeaakiaahAgadaqadaqaaiaadIhadaWgaaWcbaGa aGymaaqabaaakiaawIcacaGLPaaacqGHsisldaqadaqaaiaaigdacq GHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaa caWHMbWaaeWaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOa GaayzkaaaacaGLjWUaayPcSdGaeyizIm6aaSaaaeaacaaIZaaabaGa aGioaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOWaaqWaaeaacaWG4b WaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaI XaaabeaaaOGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiaai6 caaaa@6BE6@  

Действительно, разложив вектор-функцию f(ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWHMbGaaGikaiabe67a4jaaiM caaaa@39B6@  в точках x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaae qaaaaa@3783@  и y 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG5bWaaSbaaSqaaiaaigdaae qaaaaa@3784@  в ряды Тейлора с остаточным членом в интегральной форме и подставив в эти разложения ξ= λ 1 x 1 +(1 λ 1 ) y 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaH+oaEcaaI9aGaeq4UdW2aaS baaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIXaaabeaakiab gUcaRiaaiIcacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaigdaae qaaOGaaGykaiaadMhadaWgaaWcbaGaaGymaaqabaaaaa@4535@ , получаем, что

f ξ =f x 1 + f x 1 ξ x 1 + x 1 ξ ξt f t dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWHMbWaaeWaaeaacqaH+oaEai aawIcacaGLPaaacaaI9aGaaCOzamaabmaabaGaamiEamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiqahAgagaqbamaabm aabaGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaa bmaabaGaeqOVdGNaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaO GaayjkaiaawMcaaiabgUcaRmaapehabeWcbaGaamiEamaaBaaabaGa aGymaaqabaaabaGaeqOVdGhaniabgUIiYdGcdaqadaqaaiabe67a4j abgkHiTiaadshaaiaawIcacaGLPaaaceWHMbGbayaadaqadaqaaiaa dshaaiaawIcacaGLPaaacaWGKbGaamiDaiaaiYcaaaa@5CBC@

f ξ =f y 1 +f ' y 1 ξ y 1 + y 1 ξ ξt f t dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWHMbWaaeWaaeaacqaH+oaEai aawIcacaGLPaaacaaI9aGaaCOzamaabmaabaGaamyEamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaahAgaceaINaGbau aadaqadaqaaiaadMhadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGL Paaadaqadaqaaiabe67a4jabgkHiTiaadMhadaWgaaWcbaGaaGymaa qabaaakiaawIcacaGLPaaacqGHRaWkdaWdXbqabSqaaiaadMhadaWg aaqaaiaaigdaaeqaaaqaaiabe67a4bqdcqGHRiI8aOWaaeWaaeaacq aH+oaEcqGHsislcaWG0baacaGLOaGaayzkaaGabCOzayaagaWaaeWa aeaacaWG0baacaGLOaGaayzkaaGaamizaiaadshacaaISaaaaa@5D71@

f λ 1 x 1 + 1 λ 1 y 1 =f x 1 + f x 1 1 λ 1 y 1 x 1 + + x 1 λ 1 x 1 +(1 λ 1 ) y 1 λ 1 x 1 + 1 λ 1 y 1 t f t dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaafaqabeGabaaabaGaaCOzamaabm aabaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaa caaIXaaabeaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiabeU7aSn aaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaadMhadaWgaaWc baGaaGymaaqabaaakiaawIcacaGLPaaacaaI9aGaaCOzamaabiaaba WaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaey4kaSIabCOzayaafaWaaeWaaeaacaWG4bWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaGaaGjcVpaabmaabaGaaGymaiabgkHi TiabeU7aSnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaabe aabaGaamyEamaaBaaaleaacaaIXaaabeaaaOGaayjkaaGaeyOeI0Ia amiEamaaBaaaleaacaaIXaaabeaaaOGaayzkaaGaey4kaScabaGaey 4kaSYaa8qCaeqaleaacaWG4bWaaSbaaeaacaaIXaaabeaaaeaacqaH 7oaBdaWgaaqaaiaaigdaaeqaaiaadIhadaWgaaqaaiaaigdaaeqaai abgUcaRiaaiIcacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaeaacaaIXaaa beaacaaIPaGaamyEamaaBaaabaGaaGymaaqabaaaniabgUIiYdGcda qadaqaaiabeU7aSnaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWc baGaaGymaaqabaGccqGHRaWkdaqadaqaaiaaigdacqGHsislcqaH7o aBdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWG5bWaaSba aSqaaiaaigdaaeqaaOGaeyOeI0IaamiDaaGaayjkaiaawMcaaiqahA gagaGbamaabmaabaGaamiDaaGaayjkaiaawMcaaiaadsgacaWG0bGa aGilaaaaaaa@8730@  (4)

f λ 1 x 1 + 1 λ 1 y 1 =f y 1 + f y 1 λ 1 x 1 y 1 + + y 1 λ 1 x 1 +(1 λ 1 ) y 1 λ 1 x 1 +(1 λ 1 ) y 1 t f t dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaafaqabeGabaaabaGaaCOzamaabm aabaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaamiEamaaBaaaleaa caaIXaaabeaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiabeU7aSn aaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaadMhadaWgaaWc baGaaGymaaqabaaakiaawIcacaGLPaaacaaI9aGaaCOzamaabmaaba GaamyEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUca RiqahAgagaqbamaabmaabaGaamyEamaaBaaaleaacaaIXaaabeaaaO GaayjkaiaawMcaaiaayIW7cqaH7oaBdaWgaaWcbaGaaGymaaqabaGc daqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5b WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaScabaGa ey4kaSYaa8qCaeqaleaacaWG5bWaaSbaaeaacaaIXaaabeaaaeaacq aH7oaBdaWgaaqaaiaaigdaaeqaaiaadIhadaWgaaqaaiaaigdaaeqa aiabgUcaRiaaiIcacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaeaacaaIXa aabeaacaaIPaGaamyEamaaBaaabaGaaGymaaqabaaaniabgUIiYdGc daqadaqaaiabeU7aSnaaBaaaleaacaaIXaaabeaakiaadIhadaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaaIOaGaaGymaiabgkHiTiabeU7a SnaaBaaaleaacaaIXaaabeaakiaaiMcacaWG5bWaaSbaaSqaaiaaig daaeqaaOGaeyOeI0IaamiDaaGaayjkaiaawMcaaiqahAgagaGbamaa bmaabaGaamiDaaGaayjkaiaawMcaaiaadsgacaWG0bGaaGOlaaaaaa a@83DB@  (5)

Теперь домножим (4) на λ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaH7oaBdaWgaaWcbaGaaGymaa qabaaaaa@383A@ , (5) на 1 λ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIXaGaeyOeI0Iaeq4UdW2aaS baaSqaaiaaigdaaeqaaaaa@39E2@  и сложим их между собой:

f λ 1 x 1 + 1 λ 1 y 1 = λ 1 f x 1 + 1 λ 1 f y 1 + + λ 1 1 λ 1 y 1 x 1 f x 1 f y 1 + + λ 1 x 1 λ 1 x 1 +(1 λ 1 ) y 1 λ 1 x 1 + 1 λ 1 y 1 t f (t)dt+ + 1 λ 1 y 1 λ 1 x 1 +(1 λ 1 ) y 1 λ 1 x 1 +(1 λ 1 ) y 1 t f t dt= = λ 1 f x 1 + 1 λ 1 f y 1 + λ 1 1 λ 1 y 1 x 1 y 1 x 1 f t dt+ + λ 1 x 1 λ 1 x 1 +(1 λ 1 ) y 1 λ 1 x 1 + 1 λ 1 y 1 t f t dt+ + 1 λ 1 y 1 λ 1 x 1 +(1 λ 1 ) y 1 λ 1 x 1 + 1 λ 1 y 1 t f t dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaaiaahAgadaqadaqaaiabeU 7aSnaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHRaWkdaqadaqaaiaaigdacqGHsislcqaH7oaBdaWgaaWcba GaaGymaaqabaaakiaawIcacaGLPaaacaWG5bWaaSbaaSqaaiaaigda aeqaaaGccaGLOaGaayzkaaGaaGypaiabeU7aSnaaBaaaleaacaaIXa aabeaakiaahAgadaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaaa kiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaaigdacqGHsislcqaH7o aBdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWHMbWaaeWa aeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey 4kaScabaGaey4kaSIaaGjbVlabeU7aSnaaBaaaleaacaaIXaaabeaa kmaabmaabaGaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaamaabmaabaGaamyEamaaBaaaleaacaaIXaaa beaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaakiaawIcaca GLPaaadaqadaqaaiqahAgagaqbamaabmaabaGaamiEamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaiabgkHiTiqahAgagaqbamaabm aabaGaamyEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaGa ayjkaiaawMcaaiabgUcaRaqaaiabgUcaRiabeU7aSnaaBaaaleaaca aIXaaabeaakmaapehabeWcbaGaamiEamaaBaaabaGaaGymaaqabaaa baGaeq4UdW2aaSbaaeaacaaIXaaabeaacaWG4bWaaSbaaeaacaaIXa aabeaacqGHRaWkcaaIOaGaaGymaiabgkHiTiabeU7aSnaaBaaabaGa aGymaaqabaGaaGykaiaadMhadaWgaaqaaiaaigdaaeqaaaqdcqGHRi I8aOWaaeWaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0 Iaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaamyE amaaBaaaleaacaaIXaaabeaakiabgkHiTiaadshaaiaawIcacaGLPa aaceWHMbGbayaacaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgUca RaqaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiabeU7aSnaaBaaale aacaaIXaaabeaaaOGaayjkaiaawMcaamaapehabeWcbaGaamyEamaa BaaabaGaaGymaaqabaaabaGaeq4UdW2aaSbaaeaacaaIXaaabeaaca WG4bWaaSbaaeaacaaIXaaabeaacqGHRaWkcaaIOaGaaGymaiabgkHi TiabeU7aSnaaBaaabaGaaGymaaqabaGaaGykaiaadMhadaWgaaqaai aaigdaaeqaaaqdcqGHRiI8aOWaaeWaaeaacqaH7oaBdaWgaaWcbaGa aGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaG ikaiaaigdacqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaI PaGaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadshaaiaawI cacaGLPaaaceWHMbGbayaadaqadaqaaiaadshaaiaawIcacaGLPaaa caWGKbGaamiDaiaai2daaeaacaaI9aGaeq4UdW2aaSbaaSqaaiaaig daaeqaaOGaaCOzamaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaa aOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiabeU 7aSnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaahAgadaqa daqaaiaadMhadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacq GHRaWkcqaH7oaBdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaigda cqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPa aadaqadaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG 4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaWaa8qCaeqale aacaWG5bWaaSbaaeaacaaIXaaabeaaaeaacaWG4bWaaSbaaeaacaaI Xaaabeaaa0Gaey4kIipakiqahAgagaGbamaabmaabaGaamiDaaGaay jkaiaawMcaaiaadsgacaWG0bGaey4kaScabaGaey4kaSIaeq4UdW2a aSbaaSqaaiaaigdaaeqaaOWaa8qCaeqaleaacaWG4bWaaSbaaeaaca aIXaaabeaaaeaacqaH7oaBdaWgaaqaaiaaigdaaeqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgUcaRiaaiIcacaaIXaGaeyOeI0Iaeq4UdW 2aaSbaaeaacaaIXaaabeaacaaIPaGaamyEamaaBaaabaGaaGymaaqa baaaniabgUIiYdGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIXaaabe aakiaadIhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaqadaqaaiaa igdacqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaaakiaawIcaca GLPaaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiDaaGa ayjkaiaawMcaaiqahAgagaGbamaabmaabaGaamiDaaGaayjkaiaawM caaiaadsgacaWG0bGaey4kaScabaGaey4kaSYaaeWaaeaacaaIXaGa eyOeI0Iaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaa Waa8qCaeqaleaacaWG5bWaaSbaaeaacaaIXaaabeaaaeaacqaH7oaB daWgaaqaaiaaigdaaeqaaiaadIhadaWgaaqaaiaaigdaaeqaaiabgU caRiaaiIcacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaeaacaaIXaaabeaa caaIPaGaamyEamaaBaaabaGaaGymaaqabaaaniabgUIiYdGcdaqada qaaiabeU7aSnaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGa aGymaaqabaGccqGHRaWkdaqadaqaaiaaigdacqGHsislcqaH7oaBda WgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWG5bWaaSbaaSqa aiaaigdaaeqaaOGaeyOeI0IaamiDaaGaayjkaiaawMcaaiqahAgaga GbamaabmaabaGaamiDaaGaayjkaiaawMcaaiaadsgacaWG0bGaaGOl aaaaaa@5990@

Отсюда получаем, что

f( λ 1 x 1 +(1 λ 1 ) y 1 ) λ 1 f( x 1 )(1 λ 1 )f( y 1 ) λ 1 (1 λ 1 )( y 1 x 1 ) y 1 λ 1 x 1 +(1 λ 1 ) y 1 f (t) dt + + λ 1 x 1 λ 1 x 1 +(1 λ 1 ) y 1 λ 1 x 1 + 1 λ 1 y 1 t f (t) dt + + 1 λ 1 y 1 λ 1 x 1 +(1 λ 1 ) y 1 λ 1 x 1 + 1 λ 1 y 1 t f t dt λ 1 2 1 λ 1 m 2 y 1 x 1 2 + λ 1 m 2 1 λ 1 2 x 1 y 1 2 2 + + 1 λ 1 m 2 λ 1 2 y 1 x 1 2 2 = = 3 2 λ 1 1 λ 1 m 2 y 1 x 1 2 3 8 m 2 y 1 x 1 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaafmaabaGaaCOzaiaaiI cacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaaGikaiaaigdacqGHsislcqaH7oaBdaWgaa WcbaGaaGymaaqabaGccaaIPaGaamyEamaaBaaaleaacaaIXaaabeaa kiaaiMcacqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaWHMb GaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0Ia aGikaiaaigdacqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaGcca aIPaGaaCOzaiaaiIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGyk aaGaayzcSlaawQa7aiabgsMiJcqaaiabgsMiJkabeU7aSnaaBaaale aacaaIXaaabeaakiaaiIcacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaSqa aiaaigdaaeqaaOGaaGykaiaayIW7caaIOaGaamyEamaaBaaaleaaca aIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaGccaaI PaWaaqWaaeaadaWdXbqabSqaaiaadMhadaWgaaqaaiaaigdaaeqaaa qaaiabeU7aSnaaBaaabaGaaGymaaqabaGaamiEamaaBaaabaGaaGym aaqabaGaey4kaSIaaGikaiaaigdacqGHsislcqaH7oaBdaWgaaqaai aaigdaaeqaaiaaiMcacaWG5bWaaSbaaeaacaaIXaaabeaaa0Gaey4k IipakmaafmaabaGabCOzayaagaGaaGikaiaadshacaaIPaaacaGLjW UaayPcSdGaamizaiaadshaaiaawEa7caGLiWoacqGHRaWkaeaacqGH RaWkcqaH7oaBdaWgaaWcbaGaaGymaaqabaGcdaabdaqaamaapehabe WcbaGaamiEamaaBaaabaGaaGymaaqabaaabaGaeq4UdW2aaSbaaeaa caaIXaaabeaacaWG4bWaaSbaaeaacaaIXaaabeaacqGHRaWkcaaIOa GaaGymaiabgkHiTiabeU7aSnaaBaaabaGaaGymaaqabaGaaGykaiaa dMhadaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaaeWaaeaacqaH7o aBdaWgaaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaSqaai aaigdaaeqaaaGccaGLOaGaayzkaaGaamyEamaaBaaaleaacaaIXaaa beaakiabgkHiTiaadshaaiaawIcacaGLPaaadaqbdaqaaiqahAgaga GbaiaaiIcacaWG0bGaaGykaaGaayzcSlaawQa7aiaadsgacaWG0baa caGLhWUaayjcSdGaey4kaScabaGaey4kaSYaaeWaaeaacaaIXaGaey OeI0Iaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGa aGjcVpaaemaabaWaa8qCaeqaleaacaWG5bWaaSbaaeaacaaIXaaabe aaaeaacqaH7oaBdaWgaaqaaiaaigdaaeqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgUcaRiaaiIcacaaIXaGaeyOeI0Iaeq4UdW2aaSbaae aacaaIXaaabeaacaaIPaGaamyEamaaBaaabaGaaGymaaqabaaaniab gUIiYdGcdaqadaqaaiabeU7aSnaaBaaaleaacaaIXaaabeaakiaadI hadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaqadaqaaiaaigdacqGH sislcqaH7oaBdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaca WG5bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiDaaGaayjkaiaa wMcaamaafmaabaGabCOzayaagaWaaeWaaeaacaWG0baacaGLOaGaay zkaaaacaGLjWUaayPcSdGaamizaiaadshaaiaawEa7caGLiWoacqGH KjYOaeaacqGHKjYOcqaH7oaBdaqhaaWcbaGaaGymaaqaaiaaikdaaa GcdaqadaqaaiaaigdacqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqa baaakiaawIcacaGLPaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOWaae WaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEamaa BaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaakiabgUcaRiabeU7aSnaaBaaaleaacaaIXaaabeaakiaad2ga daWgaaWcbaGaaGOmaaqabaGcdaWcaaqaamaabmaabaGaaGymaiabgk HiTiabeU7aSnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakmaabmaabaGaamiEamaaBaaaleaacaaIXa aabeaakiabgkHiTiaadMhadaWgaaWcbaGaaGymaaqabaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiabgUcaRa qaaiabgUcaRiaaysW7daqadaqaaiaaigdacqGHsislcqaH7oaBdaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWGTbWaaSbaaSqaai aaikdaaeqaaOWaaSaaaeaacqaH7oaBdaqhaaWcbaGaaGymaaqaaiaa ikdaaaGcdaqadaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaGcbaGaaGOmaaaacaaI9aaabaGaaGypamaala aabaGaaG4maaqaaiaaikdaaaGaeq4UdW2aaSbaaSqaaiaaigdaaeqa aOWaaeWaaeaacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaigdaae qaaaGccaGLOaGaayzkaaGaamyBamaaBaaaleaacaaIYaaabeaakmaa bmaabaGaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhada WgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaGccqGHKjYOdaWcaaqaaiaaiodaaeaacaaI4aaaaiaad2gada WgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadMhadaWgaaWcbaGaaGym aaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaGOlaaaaaa@55AF@

Тем самым база индукции (лемма 4.1.) доказана.

Предположим, что неравенство (3) выполняется для некоторого n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbaaaa@3692@ . Докажем его для n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbGaey4kaSIaaGymaaaa@382F@ . Опираясь на базу и предположение индукции, с помощью неравенства треугольника несложно доказать его для размерности n + 1. Тем самым, мы осуществили индукционный переход, и, значит, лемма доказана.

Замечание 4.1. Для скалярной функции одной переменной f:[ x 0 , x 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGMbGaaGOoaiaaiUfacaWG4b WaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadIhadaWgaaWcbaGaaGym aaqabaGccaaIDbGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIuaaa@4A4F@  с ограниченной второй производной (т.е. f (x) m 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaabdaqaaiqadAgagaqbgaqbai aaiIcacaWG4bGaaGykaaGaay5bSlaawIa7aiabgsMiJkaad2gadaWg aaWcbaGaaGOmaaqabaaaaa@3FB4@ , где постоянная m 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGTbWaaSbaaSqaaiaaikdaae qaaOGaeyyzImRaaGimaaaa@3A03@  ) из оценки погрешности формулы интерполяции Лагранжа (см. [24, гл. XIV, §14, (6)])

f x x x 1 x 0 x 1 f x 0 x x 0 x 1 x 0 f x 1 max x 0 x x 1 f (x) 2 x x 0 x x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaabdaqaaiaadAgadaqadaqaai aadIhaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiaadIhacqGHsisl caWG4bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiEamaaBaaaleaaca aIWaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaaOGa amOzamaabmaabaGaamiEamaaBaaaleaacaaIWaaabeaaaOGaayjkai aawMcaaiabgkHiTmaalaaabaGaamiEaiabgkHiTiaadIhadaWgaaWc baGaaGimaaqabaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaey OeI0IaamiEamaaBaaaleaacaaIWaaabeaaaaGccaWGMbWaaeWaaeaa caWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaacaGLhW UaayjcSdGaeyizIm6aaSaaaeaadaGfqbqabSqaaiaadIhadaWgaaqa aiaaicdaaeqaaiabgsMiJkaadIhacqGHKjYOcaWG4bWaaSbaaeaaca aIXaaabeaaaeqakeaaciGGTbGaaiyyaiaacIhaaaWaaqWaaeaaceWG MbGbauGbauaacaaIOaGaamiEaiaaiMcaaiaawEa7caGLiWoaaeaaca aIYaaaaiaayIW7daabdaqaamaabmaabaGaamiEaiabgkHiTiaadIha daWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadI hacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaacaGLhWUaayjcSdaaaa@7C19@

и неравенства

x x 0 x 1 x x 1 x 0 2 4 , x 0 x x 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqadaqaaiaadIhacqGHsislca WG4bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaa caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamiEaaGaayjkai aawMcaaiabgsMiJoaalaaabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaa igdaaeqaaOGaeyOeI0IaamiEamaaBaaaleaacaaIWaaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaaaGaaGil aiaaywW7caWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyizImQaamiEai abgsMiJkaadIhadaWgaaWcbaGaaGymaaqabaGccaaISaaaaa@5563@

непосредственно следует оценка

f λx+ 1λ y λf x 1λ f( y m 2 8 yx 2 ,x,y,0λ1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaabdaqaaiaadAgadaqadaqaai abeU7aSjaadIhacqGHRaWkdaqadaqaaiaaigdacqGHsislcqaH7oaB aiaawIcacaGLPaaacaWG5baacaGLOaGaayzkaaGaeyOeI0Iaeq4UdW MaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabgkHiTmaabmaa baGaaGymaiabgkHiTiabeU7aSbGaayjkaiaawMcaaiaadAgacaaIOa WaaeWaaeaacaWG5baacaGLOaGaayzkaaaacaGLhWUaayjcSdGaeyiz Im6aaSaaaeaacaWGTbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGioaa aadaqadaqaaiaadMhacqGHsislcaWG4baacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOGaaGilaiaaywW7caWG4bGaaGilaiaadMhacq GHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab =1risjaaiYcacaaMf8UaaGimaiabgsMiJkabeU7aSjabgsMiJkaaig dacaaIUaaaaa@7941@  (6)

Однако для нашего многомерного случая приведенное в [24, гл. XIV, §14] доказательство оценки (6) не будет корректным из-за использования теоремы Лагранжа о конечных приращениях, которая, как известно, не применима для векторозначных функций.

Лемма 4.2. Пусть P (t)P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGqbGbaqbacaaIOaGaamiDai aaiMcacqGHckcZcaWGqbaaaa@3BBE@ , t[ t 0 ,ϑ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bGaeyicI4SaaG4waiaads hadaWgaaWcbaGaaGimaaqabaGccaaISaGaeqy0dOKaaGyxaaaa@3E2F@ , – некоторое сужение значений управления. И пусть измеримые по Лебегу вектор-функции u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI1bGaaGikaiaadshacaaIPa aaaa@38FD@  и v(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI2bGaaGikaiaadshacaaIPa aaaa@38FE@  действуют из [ t 0 ,ϑ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca aIWaaabeaakiaaiYcacqaHrpGscaaIDbaaaa@3BB2@  в P (t) p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGqbGbaqbacaaIOaGaamiDai aaiMcacqGHckcZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGabaiab=1risnaaCaaaleqabaGaamiCaaaaaaa@46C2@  и порождают некоторые абсолютно непрерывные движения x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGikaiaadshacaaIPa aaaa@3900@  и y(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI5bGaaGikaiaadshacaaIPa aaaa@3901@  при подстановке их в систему (1) в качестве программных управлений. При этом считаем, что система (1) удовлетворяет условиям C1 C4 на правую часть (информационные условия I1 I3 не имеют значения).

Тогда выполняется оценка

x t y t ω Δ u L e L(t t 0 ) 1 ,t[ t 0 ,ϑ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaaiaajIhadaqadaqaai aadshaaiaawIcacaGLPaaacqGHsislcaqI5bWaaeWaaeaacaWG0baa caGLOaGaayzkaaaacaGLjWUaayPcSdGaeyizIm6aaSaaaeaacqaHjp WDdaqadaqaaiabfs5aenaaBaaaleaacaWG1baabeaaaOGaayjkaiaa wMcaaaqaaiaadYeaaaWaaeWaaeaacaWGLbWaaWbaaSqabeaacaWGmb GaaGikaiaadshacqGHsislcaWG0bWaaSbaaeaacaaIWaaabeaacaaI PaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaaiYcacaaMf8Uaam iDaiabgIGiolaaiUfacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGil aiabeg9akjaai2facaaIUaaaaa@5F0E@

Доказательство. Поскольку x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGikaiaadshacaaIPa aaaa@3900@  и y(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH5bGaaGikaiaadshacaaIPa aaaa@38FF@  есть движения системы (1), соответствующие программным управлениям u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI1bGaaGikaiaadshacaaIPa aaaa@38FD@  и v(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI2bGaaGikaiaadshacaaIPa aaaa@38FE@ , то они удовлетворяют начальным условиям x( t 0 )=y( t 0 )= x (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGikaiaadshadaWgaa WcbaGaaGimaaqabaGccaaIPaGaaGypaiaajMhacaaIOaGaamiDamaa BaaaleaacaaIWaaabeaakiaaiMcacaaI9aGaaKiEamaaCaaaleqaba GaaGikaiaaicdacaaIPaaaaaaa@431F@  и дифференциальным уравнениям

x t =f t,x t ,u t ,y t =f t,y t ,v t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaeWaaeaacaWG0baaca GLOaGaayzkaaGaaGypaiaajAgadaqadaqaaiaadshacaaISaGaaKiE amaabmaabaGaamiDaaGaayjkaiaawMcaaiaaiYcacaqI1bWaaeWaae aacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGilaiaaywW7 caqI5bWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGypaiaajAgada qadaqaaiaadshacaaISaGaaKyEamaabmaabaGaamiDaaGaayjkaiaa wMcaaiaaiYcacaqI2bWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaca GLOaGaayzkaaGaaGilaaaa@5900@

которые в интегральной форме можно записать следующим образом:

x t = x (0) + t 0 t f τ,x τ ,u τ dτ,y t = x (0) + t 0 t f τ,y τ ,v τ dτ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaeWaaeaacaWG0baaca GLOaGaayzkaaGaaGypaiaajIhadaahaaWcbeqaaiaaiIcacaaIWaGa aGykaaaakiabgUcaRmaapehabeWcbaGaamiDamaaBaaabaGaaGimaa qabaaabaGaamiDaaqdcqGHRiI8aOGaaKOzamaabmaabaGaeqiXdqNa aGilaiaajIhadaqadaqaaiabes8a0bGaayjkaiaawMcaaiaaiYcaca qI1bWaaeWaaeaacqaHepaDaiaawIcacaGLPaaaaiaawIcacaGLPaaa caWGKbGaeqiXdqNaaGilaiaaysW7caqI5bWaaeWaaeaacaWG0baaca GLOaGaayzkaaGaaGypaiaajIhadaahaaWcbeqaaiaaiIcacaaIWaGa aGykaaaakiabgUcaRmaapehabeWcbaGaamiDamaaBaaabaGaaGimaa qabaaabaGaamiDaaqdcqGHRiI8aOGaaKOzamaabmaabaGaeqiXdqNa aGilaiaajMhadaqadaqaaiabes8a0bGaayjkaiaawMcaaiaaiYcaca qI2bWaaeWaaeaacqaHepaDaiaawIcacaGLPaaaaiaawIcacaGLPaaa caWGKbGaeqiXdqNaaGOlaaaa@761D@

Учитывая условие C2 и замечание 2.3, можно оценить

x(t)y(t) t 0 t f τ,x τ ,u τ f τ,y τ ,v τ dτ t 0 t f τ,x τ ,u τ f τ,y τ ,u τ + f τ,y τ ,u τ f τ,y τ ,v τ dτ t 0 t L x τ y τ dτ+ t 0 t ω u τ v τ dτ L t 0 t x τ y τ dτ+ t t 0 ω Δ u . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaafmaabaGaaKiEaiaaiI cacaWG0bGaaGykaiabgkHiTiaajMhacaaIOaGaamiDaiaaiMcaaiaa wMa7caGLkWoacqGHKjYOdaWdXbqabSqaaiaadshadaWgaaqaaiaaic daaeqaaaqaaiaadshaa0Gaey4kIipakmaafmaabaacbeGaa8Nzamaa bmaabaGaeqiXdqNaaGilaiaajIhadaqadaqaaiabes8a0bGaayjkai aawMcaaiaaiYcacaqI1bWaaeWaaeaacqaHepaDaiaawIcacaGLPaaa aiaawIcacaGLPaaacqGHsislcaWFMbWaaeWaaeaacqaHepaDcaaISa GaaKyEamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGilaiaajAha daqadaqaaiabes8a0bGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay zcSlaawQa7aiaadsgacqaHepaDcqGHKjYOaeaacqGHKjYOdaWdXbqa bSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIi pakmaabmaabaWaauWaaeaacaqIMbWaaeWaaeaacqaHepaDcaaISaGa aKiEamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGilaiaajwhada qadaqaaiabes8a0bGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgkHi TiaajAgadaqadaqaaiabes8a0jaaiYcacaqI5bWaaeWaaeaacqaHep aDaiaawIcacaGLPaaacaaISaGaaKyDamaabmaabaGaeqiXdqhacaGL OaGaayzkaaaacaGLOaGaayzkaaaacaGLjWUaayPcSdGaey4kaSIaaG jbVpaafmaabaGaa8NzamaabmaabaGaeqiXdqNaaGilaiaadMhadaqa daqaaiabes8a0bGaayjkaiaawMcaaiaaiYcacaWG1bWaaeWaaeaacq aHepaDaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHsislcaWFMbWa aeWaaeaacqaHepaDcaaISaGaamyEamaabmaabaGaeqiXdqhacaGLOa GaayzkaaGaaGilaiaadAhadaqadaqaaiabes8a0bGaayjkaiaawMca aaGaayjkaiaawMcaaaGaayzcSlaawQa7aaGaayjkaiaawMcaaiaads gacqaHepaDcqGHKjYOaeaacqGHKjYOdaWdXbqabSqaaiaadshadaWg aaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakiaadYeadaqbda qaaiaajIhadaqadaqaaiabes8a0bGaayjkaiaawMcaaiabgkHiTiaa jMhadaqadaqaaiabes8a0bGaayjkaiaawMcaaaGaayzcSlaawQa7ai aadsgacqaHepaDcqGHRaWkdaWdXbqabSqaaiaadshadaWgaaqaaiaa icdaaeqaaaqaaiaadshaa0Gaey4kIipakiabeM8a3naabmaabaWaau WaaeaacaqI1bWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacqGHsisl caqI2bWaaeWaaeaacqaHepaDaiaawIcacaGLPaaaaiaawMa7caGLkW oaaiaawIcacaGLPaaacaWGKbGaeqiXdqNaeyizImkabaGaamitamaa pehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDaaqdcq GHRiI8aOWaauWaaeaacaqI4bWaaeWaaeaacqaHepaDaiaawIcacaGL PaaacqGHsislcaqI5bWaaeWaaeaacqaHepaDaiaawIcacaGLPaaaai aawMa7caGLkWoacaWGKbGaeqiXdqNaey4kaSYaaeWaaeaacaWG0bGa eyOeI0IaamiDamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaai abeM8a3naabmaabaGaeuiLdq0aaSbaaSqaaiaadwhaaeqaaaGccaGL OaGaayzkaaGaaGOlaaaaaa@1100@

Отсюда в силу усиленной леммы Гронуолла (см. [25, гл.1, §2, c. 26]) вытекает утверждение леммы.

Пусть u ¯ (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaGqabiaa=vhaaaGaaG ikaiaadshacaaIPaaaaa@390E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  фиксированная кусочно постоянная вектор-функция со значениями из P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGqbaaaa@3674@  с разрывами на концах отрезков разбиения Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHtoWraaa@3707@ , x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGikaiaadshacaaIPa aaaa@3900@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  решение задачи Коши

x t =f t,x t , u ¯ t ,t t 0 ,ϑ , x t 0 = x (0) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaaiaajIhadaqadaqaaiaads haaiaawIcacaGLPaaacaaI9aGaaKOzamaabmaabaGaamiDaiaaiYca caqI4bWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGilamaanaaaba GaaKyDaaaadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGL PaaacaaISaGaaGzbVlaadshacqGHiiIZdaqadaqaaiaadshadaWgaa WcbaGaaGimaaqabaGccaaISaGaeqy0dOeacaGLOaGaayzkaaGaaGil aaqaaiaajIhadaqadaqaaiaadshadaWgaaWcbaGaaGimaaqabaaaki aawIcacaGLPaaacaaI9aGaaKiEamaaCaaaleqabaGaaGikaiaaicda caaIPaaaaOGaaGilaaaaaa@5A7C@  (7)

x ¯ (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaGqabiaa=HhaaaGaaG ikaiaadshacaaIPaaaaa@3911@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  простейшая линейная аппроксимация сеточной функция, являющейся численным решением задачи (6) явным методом Рунге-Кутты второго порядка с шагом Δ t / N k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamiDaa qabaGccaaIVaGaamOtamaaBaaaleaacaWGRbaabeaaaaa@3ADC@  на участках [ t k1 , t k ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca WGRbGaeyOeI0IaaGymaaqabaGccaaISaGaaGjbVlaaysW7caaMe8Ua amiDamaaBaaaleaacaWGRbaabeaakiaai2faaaa@42AE@  при k= 1,N ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGRbGaaGypamaanaaabaGaaG ymaiaaiYcacaWGobaaaaaa@39AB@ , а именно, по рекуррентным формулам

x ¯ t 0 = x * t 0 , x ¯ t k+1 =F Γ k+1 , x ¯ t k , u ¯ t k + Δ t /2 ,k= 0,N1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaeWaae aacaWG0bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaaGyp aiaahIhadaahaaWcbeqaaiaaiQcaaaGcdaqadaqaaiaadshadaWgaa WcbaGaaGimaaqabaaakiaawIcacaGLPaaacaaISaGaaGzbVpaanaaa baGaaKiEaaaadaqadaqaaiaadshadaWgaaWcbaGaam4AaiabgUcaRi aaigdaaeqaaaGccaGLOaGaayzkaaGaaGypamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbaceaGae8xmHy0aaeWaaeaacqqHtoWrda WgaaWcbaGaam4AaiabgUcaRiaaigdaaeqaaOGaaGilamaanaaabaGa amiEaaaadaqadaqaaiaadshadaWgaaWcbaGaam4AaaqabaaakiaawI cacaGLPaaacaaISaWaa0aaaeaacaqI1baaamaabmaabaGaamiDamaa BaaaleaacaWGRbaabeaakiabgUcaRiabfs5aenaaBaaaleaacaWG0b aabeaakiaai+cacaaIYaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGa aGilaiaaysW7caaMe8Uaam4Aaiaai2dadaqdaaqaaiaaicdacaaISa GaamOtaiabgkHiTiaaigdaaaGaaGilaaaa@7408@

где подразбиения Γ 1 ,, Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGymaa qabaGccaaISaGaeSOjGSKaaGilaiabfo5ahnaaBaaaleaacaWGobaa beaaaaa@3CED@  определены согласно первому шагу алгоритма 1 с некоторыми числами N 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGobWaaSbaaSqaaiaaigdaae qaaaaa@3759@ , N 2 ,, N N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGobWaaSbaaSqaaiaaikdaae qaaOGaaGilaiablAciljaaiYcacaWGobWaaSbaaSqaaiaad6eaaeqa aaaa@3BC4@ .

Посредством функции δ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaH0oazcaaIOaGaamiDaiaaiM caaaa@39A2@  обозначим оценку

  x ¯ t x t δ t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaanaaabaGaaKiEaa aadaqadaqaaiaadshaaiaawIcacaGLPaaacqGHsislcaqI4bWaaeWa aeaacaWG0baacaGLOaGaayzkaaaacaGLjWUaayPcSdGaeyizImQaeq iTdq2aaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGilaaaa@4760@  (8)

вид которой, согласно [23, п. 4.3.1, п. 4.3.2], есть

δ(t) = Δ ˜ t 2 C Λ e (t t 0 )Λ 1 + δ x e L(t t 0 ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaaiabes7aKjaaiIcaca WG0bGaaGykaaGaayzcSlaawQa7aiaai2dadaaiaaqaaiabfs5aebGa ay5adaWaa0baaSqaaiaadshaaeaacaaIYaaaaOWaaSaaaeaacaWGdb aabaGaeu4MdWeaamaabmaabaGaamyzamaaCaaaleqabaGaaGikaiaa dshacqGHsislcaWG0bWaaSbaaeaacaaIWaaabeaacaaIPaGaeu4MdW eaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgUcaRiabes7aKnaa BaaaleaacaWG4baabeaakiaadwgadaahaaWcbeqaaiaadYeacaaIOa GaamiDaiabgkHiTiaadshadaWgaaqaaiaaicdaaeqaaiaaiMcaaaGc caaISaaaaa@5A58@

где

Λ=L+ L Δ ˜ t 2 + L Δ ˜ t 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHBoatcaaI9aGaamitaiabgU caRmaalaaabaGaamitamaaGaaabaGaeuiLdqeacaGLdmaadaWgaaWc baGaamiDaaqabaaakeaacaaIYaaaaiabgUcaRmaabmaabaWaaSaaae aacaWGmbWaaacaaeaacqqHuoaraiaawoWaamaaBaaaleaacaWG0baa beaaaOqaaiaaikdaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaaa@46CA@ , Δ ˜ t =max{ Δ t N 1 ,, Δ t N N } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiabfs5aebGaay5ada WaaSbaaSqaaiaadshaaeqaaOGaaGypaiGac2gacaGGHbGaaiiEaiaa iUhadaWcaaqaaiabfs5aenaaBaaaleaacaWG0baabeaaaOqaaiaad6 eadaWgaaWcbaGaaGymaaqabaaaaOGaaGilaiablAciljaaiYcadaWc aaqaaiabfs5aenaaBaaaleaacaWG0baabeaaaOqaaiaad6eadaWgaa WcbaGaamOtaaqabaaaaOGaaGyFaaaa@4A15@ ,

постоянная C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGdbaaaa@3667@  выражается некоторым образом через максимум функции f(t,x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGMbGaaGikaiaadshacaaISa GaaCiEaiaaiYcacaWH1bGaaGykaaaa@3C53@ , ее первых и вторых частных производных по всем (t,x)Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIOaGaamiDaiaaiYcacaWH4b GaaGykaiabgIGiolabfM6axbaa@3CC6@  и uP MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH1bGaeyicI4Saamiuaaaa@38F6@ .

Замечание 4.2. Заметим, что в местах линейной аппроксимации x ¯ (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaGaaGikai aadshacaaIPaaaaa@3911@  сеточной функции погрешность может оказаться несколько больше, чем в узловых точках метода Рунге MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ Кутты, что может привести к некоторому увеличению постоянной C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGdbaaaa@3667@ . В дальнейшем такую линейную аппроксимацию сеточной функции будем называть ломаной Эйлера.

Теорема 4.1 Пусть система (1) удовлетворяет условиям C1C4, а управление ей производится в информационных условиях I1–I3, и пусть при решении задачи 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIXaaaaa@365A@  на шаге 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaI1aaaaa@365E@  алгоритма 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIXaaaaa@365A@  было установлено существование допустимого разрешающего управления, а затем с помощью алгоритма 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIYaaaaa@365B@  было построено программное управление u ^ (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqiaaqaaiaajwhaaiaawkWaai aaiIcacaWG0bGaaGykaaaa@39BF@ , порождающее движение x ^ (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqiaaqaaiaadIhaaiaawkWaai aaiIcacaWG0bGaaGykaaaa@39BC@ . Тогда

ρ x ^ ϑ , x (f) Δ x +δ ϑ + 3 M 2 8L × Δ u 2 + ω 2 Δ u L 2 e L(ϑ t 0 ) 1 2 e L(ϑ t 0 ) 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaafaqabeqabaaabaGaeqyWdi3aae WaaeaadaqiaaqaaiaajIhaaiaawkWaamaabmaabaGaeqy0dOeacaGL OaGaayzkaaGaaGilaiaayIW7caqI4bWaaWbaaSqabeaacaaIOaGaam OzaiaaiMcaaaaakiaawIcacaGLPaaacqGHKjYOcqqHuoardaWgaaWc baGaamiEaaqabaGccqGHRaWkcqaH0oazdaqadaqaaiabeg9akbGaay jkaiaawMcaaiabgUcaRmaalaaabaGaaG4maiaad2eadaWgaaWcbaGa aGOmaaqabaaakeaacaaI4aGaamitaaaacaaMe8UaaGjcVlabgEna0k aaysW7daqadaqaaiabfs5aenaaDaaaleaacaWG1baabaGaaGOmaaaa kiabgUcaRmaalaaabaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOWaae WaaeaacqqHuoardaWgaaWcbaGaamyDaaqabaaakiaawIcacaGLPaaa aeaacaWGmbWaaWbaaSqabeaacaaIYaaaaaaakmaabmaabaGaamyzam aaCaaaleqabaGaamitaiaaiIcacqaHrpGscqGHsislcaWG0bWaaSba aeaacaaIWaaabeaacaaIPaaaaOGaeyOeI0IaaGymaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaaysW7daqa daqaaiaadwgadaahaaWcbeqaaiaadYeacaaIOaGaeqy0dOKaeyOeI0 IaamiDamaaBaaabaGaaGimaaqabaGaaGykaaaakiabgkHiTiaaigda aiaawIcacaGLPaaacaaIUaaaaaaa@8113@  (9)

Доказательство. В соответствии с шагом 3 алгоритма 1 целевая точка x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391D@  находится внутри некоторого n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGUbaaaa@3692@  -мерного куба K j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaadQgaae qaaaaa@378A@  с вершинами x (f,j,±,±,,±) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiYcacaWGQbGaaGilaiabgglaXkaaiYcacqGHXcqScaaI SaGaaGjcVlablAciljaaiYcacaaMi8UaeyySaeRaaGykaaaaaaa@47AA@ . Тогда x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391D@  можно выразить в виде некоторой выпуклой линейной комбинации вершин куба K j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaadQgaae qaaaaa@378A@ , т.е.

x (f) = λ 1 λ 2 λ n x (f,j,,,,) + 1 λ 1 λ 2 λ n x (f,j,+,,,) + + 1 λ 1 1 λ 2 1 λ n x (f,j,+,+,,+) ,0 λ k 1,k= 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaaiaajIhadaahaaWcbeqaai aaiIcacaWGMbGaaGykaaaakiaai2dacqaH7oaBdaWgaaWcbaGaaGym aaqabaGccqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqWIVlctcqaH7o aBdaWgaaWcbaGaamOBaaqabaGccaqI4bWaaWbaaSqabeaacaaIOaGa amOzaiaaiYcacaWGQbGaaGilaiabgkHiTiaaiYcacqGHsislcaaISa GaeSOjGSKaaGilaiabgkHiTiaaiMcaaaGccqGHRaWkcaaMe8+aaeWa aeaacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeS47IWKa eq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaKiEamaaCaaaleqabaGaaG ikaiaadAgacaaISaGaamOAaiaaiYcacqGHRaWkcaaISaGaeyOeI0Ia aGilaiablAciljaaiYcacqGHsislcaaIPaaaaOGaey4kaSIaeS47IW eabaGaeS47IWKaey4kaSIaaGjbVpaabmaabaGaaGymaiabgkHiTiab eU7aSnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaabmaaba GaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaaIYaaabeaaaOGaayjk aiaawMcaaiaayIW7cqWIVlctcaaMi8+aaeWaaeaacaaIXaGaeyOeI0 Iaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaaKiE amaaCaaaleqabaGaaGikaiaadAgacaaISaGaamOAaiaaiYcacqGHRa WkcaaISaGaey4kaSIaaGilaiablAciljaaiYcacqGHRaWkcaaIPaaa aOGaaGilaiaaysW7caaMe8UaaGjbVlaaicdatuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGabaiab=1NkekabeU7aSnaaBaaaleaa caWGRbaabeaakiab=1NkekaaigdacaGGSaGaaGjbVlaaysW7caaMe8 Uaam4Aaiaai2dadaqdaaqaaiaaigdacaaISaGaamOBaaaacaGGUaaa aaa@B643@

Через x ^ (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqiaaqaaiaajIhaaiaawkWaai aaiIcacaWG0bGaaGykaaaa@39C2@  в формулировке теоремы обозначено движение системы (1), порожденное управлением

u ^ t = λ 1 λ 2 λ n u ¯ (j,,,,) t + 1 λ 1 λ 2 λ n u ¯ (j,+,,,) t + + 1 λ 1 1 λ 2 1 λ n u ¯ (j,+,+,,+) t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaabeqaamaaHaaabaGaaKyDaaGaay PadaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGypaiabeU7aSnaa BaaaleaacaaIXaaabeaakiabeU7aSnaaBaaaleaacaaIYaaabeaaki abl+UimjabeU7aSnaaBaaaleaacaWGUbaabeaakmaanaaabaGaaKyD aaaadaahaaWcbeqaaiaaiIcacaWGQbGaaGilaiabgkHiTiaaiYcacq GHsislcaaISaGaeSOjGSKaaGilaiabgkHiTiaaiMcaaaGcdaqadaqa aiaadshaaiaawIcacaGLPaaacqGHRaWkcaaMe8+aaeWaaeaacaaIXa GaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeS47IWKaeq4UdW2aaS baaSqaaiaad6gaaeqaaOWaa0aaaeaacaqI1baaamaaCaaaleqabaGa aGikaiaadQgacaaISaGaey4kaSIaaGilaiabgkHiTiaaiYcacqWIMa YscaaISaGaeyOeI0IaaGykaaaakmaabmaabaGaamiDaaGaayjkaiaa wMcaaiabgUcaRiabl+Uimbqaaiabl+UimjabgUcaRmaabmaabaGaaG ymaiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaa wMcaamaabmaabaGaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaaIYa aabeaaaOGaayjkaiaawMcaaiabl+UimnaabmaabaGaaGymaiabgkHi TiabeU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaamaana aabaGaaKyDaaaadaahaaWcbeqaaiaaiIcacaWGQbGaaGilaiabgUca RiaaiYcacqGHRaWkcaaISaGaeSOjGSKaaGilaiabgUcaRiaaiMcaaa GcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaIUaaaaaa@94EF@

Отметим, что в наших обозначениях x ^ ( t 0 )=x( t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqiaaqaaiaajIhaaiaawkWaai aaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaqI 4bGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3FCA@  есть точное начальное состояние системы. По построению (см. (2)) для всех x (f,j,±,±,,±) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiYcacaWGQbGaaGilaiabgglaXkaaiYcacqGHXcqScaaI SaGaaGjcVlablAciljaaiYcacaaMi8UaeyySaeRaaGykaaaaaaa@47AA@  найдется такое x ¯ (N,j,±,±,,±) X ˜ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaamOtaiaaiYcacaWGQbGaaGilaiabgglaXkaaiYca cqGHXcqScaaISaGaaGjcVlablAciljaaiYcacaaMi8UaeyySaeRaaG ykaaaakiabgIGiopaaGaaabaGaamiwaaGaay5adaWaaSbaaSqaaiaa d6eaaeqaaaaa@4BCF@ , что

x ¯ (N,j,±,±,,±) x (f,j,±,±,,±) Δ x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaanaaabaGaaKiEaa aadaahaaWcbeqaaiaaiIcacaWGobGaaGilaiaadQgacaaISaGaeyyS aeRaaGilaiabgglaXkaaiYcacqWIMaYscaaISaGaeyySaeRaaGykaa aakiabgkHiTiaajIhadaahaaWcbeqaaiaaiIcacaWGMbGaaGilaiaa dQgacaaISaGaeyySaeRaaGilaiabgglaXkaaiYcacqWIMaYscaaISa GaeyySaeRaaGykaaaaaOGaayzcSlaawQa7aiabgsMiJkabfs5aenaa BaaaleaacaWG4baabeaakiaai6caaaa@5C98@  (10)

Обозначим через

x ¯ (k,j) = λ 1 λ n x ¯ (k,j,,,,) ++ 1 λ 1 1 λ n x ¯ (k,j,+,+,,+) ,k= 0,N ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaam4AaiaaiYcacaWGQbGaaGykaaaakiaai2dacqaH 7oaBdaWgaaWcbaGaaGymaaqabaGccqWIVlctcqaH7oaBdaWgaaWcba GaamOBaaqabaGccaaMi8+aa0aaaeaacaqI4baaamaaCaaaleqabaGa aGikaiaadUgacaaISaGaamOAaiaaiYcacqGHsislcaaISaGaeyOeI0 IaaGilaiablAciljaaiYcacqGHsislcaaIPaaaaOGaey4kaSIaeS47 IWKaey4kaSYaaeWaaeaacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaSqaai aaigdaaeqaaaGccaGLOaGaayzkaaGaeS47IW0aaeWaaeaacaaIXaGa eyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaa GaaGjcVpaanaaabaGaaKiEaaaadaahaaWcbeqaaiaaiIcacaWGRbGa aGilaiaadQgacaaISaGaey4kaSIaaGilaiabgUcaRiaaiYcacqWIMa YscaaISaGaey4kaSIaaGykaaaakiaaiYcacaaMf8Uaam4Aaiaai2da daqdaaqaaiaaicdacaaISaGaamOtaaaacaaIUaaaaa@76B3@  (11)

Из (9) и (10) следует соотношение

x ¯ (N,j) x (f) Δ x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaanaaabaGaaKiEaa aadaahaaWcbeqaaiaaiIcacaWGobGaaGilaiaadQgacaaIPaaaaOGa eyOeI0IaaKiEamaaCaaaleqabaGaaGikaiaadAgacaaIPaaaaaGcca GLjWUaayPcSdGaeyizImQaeuiLdq0aaSbaaSqaaiaadIhaaeqaaOGa aGOlaaaa@476B@  (12)

Далее оценим x ^ (ϑ) x ¯ (N,j) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaaHaaabaGaaKiEaa GaayPadaGaaGikaiabeg9akjaaiMcacqGHsisldaqdaaqaaiaajIha aaWaaWbaaSqabeaacaaIOaGaamOtaiaaiYcacaWGQbGaaGykaaaaaO GaayzcSlaawQa7aiaai6caaaa@4465@

Через x ¯ (j,±,±,,±) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaamOAaiaaiYcacqGHXcqScaaISaGaeyySaeRaaGil aiablAciljaaiYcacqGHXcqScaaIPaaaaOGaaGikaiaadshacaaIPa aaaa@4560@  обозначим ломаные Эйлера, проходящие через точки

x (0) , x ¯ (1,j,±,±,,±) =F Γ 1 , x (0) , u ¯ (1,j,±,±,,±) ,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaaGimaiaaiMcaaaGccaaISaGaaGzbVpaanaaabaGaaKiEaaaadaah aaWcbeqaaiaaiIcacaaIXaGaaGilaiaadQgacaaISaGaeyySaeRaaG ilaiabgglaXkaaiYcacqWIMaYscaaISaGaeyySaeRaaGykaaaakiaa i2datuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=f tignaabmaabaGaeu4KdC0aaSbaaSqaaiaaigdaaeqaaOGaaGilaiaa jIhadaahaaWcbeqaaiaaiIcacaaIWaGaaGykaaaakiaaiYcadaqdaa qaaiaajwhaaaWaaWbaaSqabeaacaaIOaGaaGymaiaaiYcacaWGQbGa aGilaiabgglaXkaaiYcacqGHXcqScaaISaGaeSOjGSKaaGilaiabgg laXkaaiMcaaaaakiaawIcacaGLPaaacaaISaGaeSOjGSKaaGilaaaa @6F83@

x ¯ (k,j,±,±,,±) =F Γ k , x (k1,j,±,±,,±) , u ¯ (k,j,±,±,,±) ,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaam4AaiaaiYcacaWGQbGaaGilaiabgglaXkaaiYca cqGHXcqScaaISaGaeSOjGSKaaGilaiabgglaXkaaiMcaaaGccaaI9a Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFXeIr daqadaqaaiabfo5ahnaaBaaaleaacaWGRbaabeaakiaaiYcacaqI4b WaaWbaaSqabeaacaaIOaGaam4AaiabgkHiTiaaigdacaaISaGaamOA aiaaiYcacqGHXcqScaaISaGaeyySaeRaaGilaiablAciljaaiYcacq GHXcqScaaIPaaaaOGaaGilamaanaaabaGaaKyDaaaadaahaaWcbeqa aiaaiIcacaWGRbGaaGilaiaadQgacaaISaGaeyySaeRaaGilaiabgg laXkaaiYcacqWIMaYscaaISaGaeyySaeRaaGykaaaaaOGaayjkaiaa wMcaaiaaiYcacqWIMaYscaaISaaaaa@77CC@

x ¯ (N,j,±,±,,±) =F Γ N , x (N1,j,±,±,,±) , u ¯ (N,j,±,±,,±) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaamOtaiaaiYcacaWGQbGaaGilaiabgglaXkaaiYca cqGHXcqScaaISaGaeSOjGSKaaGilaiabgglaXkaaiMcaaaGccaaI9a Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFXeIr daqadaqaaiabfo5ahnaaBaaaleaacaWGobaabeaakiaaiYcacaqI4b WaaWbaaSqabeaacaaIOaGaamOtaiabgkHiTiaaigdacaaISaGaamOA aiaaiYcacqGHXcqScaaISaGaeyySaeRaaGilaiablAciljaaiYcacq GHXcqScaaIPaaaaOGaaGilamaanaaabaGaaKyDaaaadaahaaWcbeqa aiaaiIcacaWGobGaaGilaiaadQgacaaISaGaeyySaeRaaGilaiabgg laXkaaiYcacqWIMaYscaaISaGaeyySaeRaaGykaaaaaOGaayjkaiaa wMcaaiaaiYcaaaa@7580@

соответственно, через x ¯ (j) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaamOAaiaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@3B9C@  обозначим линейную комбинацию ломанных Эйлера

x ¯ (j) t = λ 1 λ n x ¯ (k,j,,,,) t ++ 1 λ 1 1 λ n x ¯ (k,j,+,+,,+) t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaamOAaiaaiMcaaaGcdaqadaqaaiaadshaaiaawIca caGLPaaacaaI9aGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeS47IW Kaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGjcVpaanaaabaGaaKiE aaaadaahaaWcbeqaaiaaiIcacaWGRbGaaGilaiaadQgacaaISaGaey OeI0IaaGilaiabgkHiTiaaiYcacqWIMaYscaaISaGaeyOeI0IaaGyk aaaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRiabl+Uimj abgUcaRmaabmaabaGaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaaI XaaabeaaaOGaayjkaiaawMcaaiabl+UimnaabmaabaGaaGymaiabgk HiTiabeU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaa yIW7daqdaaqaaiaajIhaaaWaaWbaaSqabeaacaaIOaGaam4AaiaaiY cacaWGQbGaaGilaiabgUcaRiaaiYcacqGHRaWkcaaISaGaeSOjGSKa aGilaiabgUcaRiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPa aacaaISaaaaa@7642@

проходящую через точки x ¯ (k,j) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaam4AaiaaiYcacaWGQbGaaGykaaaaaaa@3ADA@ , k= 0,N ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGRbGaaGypamaanaaabaGaaG imaiaaiYcacaWGobaaaaaa@39AA@ .

Через x (j,±,±,,±) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOAaiaaiYcacqGHXcqScaaISaGaeyySaeRaaGilaiablAciljaa iYcacqGHXcqScaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@454F@  обозначим решения задач Коши:

d x (j,±,±,,±) t dt =f t, x (j,±,±,,±) t , u ¯ (j,±,±,,±) t ,t( t 0 ,ϑ), x (j,±,±,,±) t 0 = x ^ t 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaalaaabaGaamizaiaajI hadaahaaWcbeqaaiaaiIcacaWGQbGaaGilaiabgglaXkaaiYcacqGH XcqScaaISaGaeSOjGSKaaGilaiabgglaXkaaiMcaaaGcdaqadaqaai aadshaaiaawIcacaGLPaaaaeaacaWGKbGaamiDaaaacaaI9aacbeGa a8NzamaabmaabaGaamiDaiaaiYcacaqI4bWaaWbaaSqabeaacaaIOa GaamOAaiaaiYcacqGHXcqScaaISaGaeyySaeRaaGilaiablAciljaa iYcacqGHXcqScaaIPaaaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaa GaaGilamaanaaabaGaaKyDaaaadaahaaWcbeqaaiaaiIcacaWGQbGa aGilaiabgglaXkaaiYcacqGHXcqScaaISaGaeSOjGSKaaGilaiabgg laXkaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIca caGLPaaacaaISaGaaGjbVlaaysW7caaMe8UaamiDaiabgIGiolaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiabeg9akjaaiMca caaISaaabaGaaKiEamaaCaaaleqabaGaaGikaiaadQgacaaISaGaey ySaeRaaGilaiabgglaXkaaiYcacqWIMaYscaaISaGaeyySaeRaaGyk aaaakmaabmaabaGaamiDamaaBaaaleaacaaIWaaabeaaaOGaayjkai aawMcaaiaai2dadaqiaaqaaiaajIhaaiaawkWaamaabmaabaGaamiD amaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiaaiYcaaaaa@9366@

их линейную комбинацию обозначим через

x (j) t = λ 1 λ n x (j,+,+,,+) t ++ 1 λ 1 1 λ n x (j,,,,) t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOAaiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaI 9aGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeS47IWKaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaKiEamaaCaaaleqabaGaaGikaiaadQga caaISaGaey4kaSIaaGilaiabgUcaRiaaiYcacaaMi8UaeSOjGSKaaG ilaiaayIW7cqGHRaWkcaaIPaaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaey4kaSIaeS47IWKaey4kaSYaaeWaaeaacaaIXaGaeyOeI0 Iaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeS47 IW0aaeWaaeaacaaIXaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaae qaaaGccaGLOaGaayzkaaGaaKiEamaaCaaaleqabaGaaGikaiaadQga caaISaGaeyOeI0IaaGilaiabgkHiTiaaiYcacaaMi8UaeSOjGSKaaG ilaiaayIW7cqGHsislcaaIPaaaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaaGOlaaaa@75E7@  (13)

В силу обозначения (8) выполнены оценки

x ¯ (j,±,±,,±) t x (j,±,±,,±) t δ t ,t[ t 0 ,ϑ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaanaaabaGaaKiEaa aadaahaaWcbeqaaiaaiIcacaWGQbGaaGilaiabgglaXkaaiYcacqGH XcqScaaISaGaeSOjGSKaaGilaiabgglaXkaaiMcaaaGcdaqadaqaai aadshaaiaawIcacaGLPaaacqGHsislcaqI4bWaaWbaaSqabeaacaaI OaGaamOAaiaaiYcacqGHXcqScaaISaGaeyySaeRaaGilaiablAcilj aaiYcacqGHXcqScaaIPaaaaOWaaeWaaeaacaWG0baacaGLOaGaayzk aaaacaGLjWUaayPcSdGaeyizImQaeqiTdq2aaeWaaeaacaWG0baaca GLOaGaayzkaaGaaGilaiaaywW7caWG0bGaeyicI4SaaG4waiaadsha daWgaaWcbaGaaGimaaqabaGccaaISaGaeqy0dOKaaGyxaiaai6caaa a@6AD4@  (14)

Применяя неравенство треугольника и учитывая обозначение x ¯ (N,j) = x ¯ (j) (ϑ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajIhaaaWaaWbaaS qabeaacaaIOaGaamOtaiaaiYcacaWGQbGaaGykaaaakiaai2dadaqd aaqaaiaahIhaaaWaaWbaaSqabeaacaaIOaGaamOAaiaaiMcaaaGcca aIOaGaeqy0dOKaaGykaaaa@4238@ , получаем, что

x ^ ϑ x ¯ (N,j) x ^ ϑ x (j) ϑ + x (j) ϑ x ¯ (j) ϑ x ^ ϑ x (j) ϑ +δ ϑ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaafaqabeqabaaabaWaauWaaeaada qiaaqaaiaajIhaaiaawkWaamaabmaabaGaeqy0dOeacaGLOaGaayzk aaGaeyOeI0Yaa0aaaeaacaWG4baaamaaCaaaleqabaGaaGikaiaad6 eacaaISaGaamOAaiaaiMcaaaaakiaawMa7caGLkWoacqGHKjYOdaqb daqaamaaHaaabaGaaKiEaaGaayPadaWaaeWaaeaacqaHrpGsaiaawI cacaGLPaaacqGHsislcaWH4bWaaWbaaSqabeaacaaIOaGaamOAaiaa iMcaaaGcdaqadaqaaiabeg9akbGaayjkaiaawMcaaaGaayzcSlaawQ a7aiabgUcaRmaafmaabaGaaCiEamaaCaaaleqabaGaaGikaiaadQga caaIPaaaaOWaaeWaaeaacqaHrpGsaiaawIcacaGLPaaacqGHsislda qdaaqaaiaajIhaaaWaaWbaaSqabeaacaaIOaGaamOAaiaaiMcaaaGc daqadaqaaiabeg9akbGaayjkaiaawMcaaaGaayzcSlaawQa7aiabgs MiJoaafmaabaWaaecaaeaacaqI4baacaGLcmaadaqadaqaaiabeg9a kbGaayjkaiaawMcaaiabgkHiTiaahIhadaahaaWcbeqaaiaaiIcaca WGQbGaaGykaaaakmaabmaabaGaeqy0dOeacaGLOaGaayzkaaaacaGL jWUaayPcSdGaey4kaSIaeqiTdq2aaeWaaeaacqaHrpGsaiaawIcaca GLPaaacaaISaaaaaaa@7FBF@  (15)

где второе слагаемое оценено через δ(ϑ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaH0oazcaaIOaGaeqy0dOKaaG ykaaaa@3A51@  в силу (14).

Чтобы оценить первое слагаемое, рассмотрим следующую задачу Коши:

d x ^ t dt =f t, x ^ t , u ^ t ,t t 0 ,ϑ , x ^ t 0 =x t 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaalaaabaGaamizamaaHa aabaGaaKiEaaGaayPadaWaaeWaaeaacaWG0baacaGLOaGaayzkaaaa baGaamizaiaadshaaaGaaGypaGqabiaa=zgadaqadaqaaiaadshaca aISaWaaecaaeaacaqI4baacaGLcmaadaqadaqaaiaadshaaiaawIca caGLPaaacaaISaWaaecaaeaacaqI1baacaGLcmaadaqadaqaaiaads haaiaawIcacaGLPaaaaiaawIcacaGLPaaacaaISaGaaGzbVlaadsha cqGHiiIZdaqadaqaaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISa Gaeqy0dOeacaGLOaGaayzkaaGaaGilaaqaamaaHaaabaGaaKiEaaGa ayPadaWaaeWaaeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOa GaayzkaaGaaGypaiaajIhadaqadaqaaiaadshadaWgaaWcbaGaaGim aaqabaaakiaawIcacaGLPaaacaaIUaaaaaa@616C@

Заметим, что в силу леммы 4.1

f t, x (j) t , λ 1 λ n u ¯ (j,,,) t ++ 1 λ 1 1 λ n u ¯ (j,+,,+) t = = λ 1 λ n f t, x (j,,,)(t) , u ¯ (j,,,) t + + 1 λ 1 1 λ n f t, x (j,+,,+)(t) , u (j,+,,+) t +r t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaafaqabeWabaaabaacbeGaa8Nzam aabmaabaGaamiDaiaaiYcacaqI4bWaaWbaaSqabeaacaaIOaGaamOA aiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaISaGaeq 4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeS47IWKaeq4UdW2aaSbaaSqa aiaad6gaaeqaaOGaaGjcVpaanaaabaGaaKyDaaaadaahaaWcbeqaai aaiIcacaWGQbGaaGilaiabgkHiTiaaiYcacqWIMaYscaaISaGaeyOe I0IaaGykaaaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRi abl+UimjabgUcaRmaabmaabaGaaGymaiabgkHiTiabeU7aSnaaBaaa leaacaaIXaaabeaaaOGaayjkaiaawMcaaiabl+UimnaabmaabaGaaG ymaiabgkHiTiabeU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaa wMcaaiaayIW7daqdaaqaaiaajwhaaaWaaWbaaSqabeaacaaIOaGaam OAaiaaiYcacqGHRaWkcaaISaGaeSOjGSKaaGilaiabgUcaRiaaiMca aaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaca aI9aaabaGaaGypaiabeU7aSnaaBaaaleaacaaIXaaabeaakiabl+Ui mjabeU7aSnaaBaaaleaacaWGUbaabeaakiaayIW7caWFMbWaaeWaae aacaWG0bGaaGilaiaajIhadaahaaWcbeqaaiaaiIcacaWGQbGaaGil aiabgkHiTiaaiYcacqWIMaYscaaISaGaeyOeI0IaaGykaiaaiIcaca WG0bGaaGykaaaakiaaiYcadaqdaaqaaiaajwhaaaWaaWbaaSqabeaa caaIOaGaamOAaiaaiYcacqGHsislcaaISaGaeSOjGSKaaGilaiabgk HiTiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIca caGLPaaacqGHRaWkcqWIVlctaeaacqWIVlctcqGHRaWkdaqadaqaai aaigdacqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaaakiaawIca caGLPaaacqWIVlctdaqadaqaaiaaigdacqGHsislcqaH7oaBdaWgaa WcbaGaamOBaaqabaaakiaawIcacaGLPaaacaaMi8Uaa8Nzamaabmaa baGaamiDaiaaiYcacaqI4bWaaWbaaSqabeaacaaIOaGaamOAaiaaiY cacqGHRaWkcaaISaGaeSOjGSKaaGilaiabgUcaRiaaiMcacaaIOaGa amiDaiaaiMcaaaGccaaISaGaaKyDamaaCaaaleqabaGaaGikaiaadQ gacaaISaGaey4kaSIaaGilaiablAciljaaiYcacqGHRaWkcaaIPaaa aOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey 4kaSIaaCOCamaabmaabaGaamiDaaGaayjkaiaawMcaaiaaiYcaaaaa aa@CDB5@  (16)

где x (j) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaamOAaiaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@3B89@  определено в (13), r(t) 3 8 M 2 Δ ˜ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaaiaahkhacaaIOaGaam iDaiaaiMcaaiaawMa7caGLkWoatuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGabaiab=1NkeoaalaaabaGaaG4maaqaaiaaiIdaaa GaaGjcVlaad2eadaWgaaWcbaGaaGOmaaqabaGcdaaiaaqaaiabfs5a ebGaay5adaWaa0baaSqaaiaadwhaaeaacaaIYaaaaaaa@5060@ , Δ ˜ u = Δ u 2 + d x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiabfs5aebGaay5ada WaaSbaaSqaaiaadwhaaeqaaOGaaGypamaakaaabaGaeuiLdq0aa0ba aSqaaiaadwhaaeaacaaIYaaaaOGaey4kaSIaamizamaaDaaaleaaca WG4baabaGaaGOmaaaaaeqaaaaa@40D2@ , d x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGKbWaaSbaaSqaaiaadIhaae qaaaaa@37B1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  максимальный диаметр сечений интегральных воронок, соответствующих сужениям P j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGqbGbaqbadaWgaaWcbaGaam OAaaqabaaaaa@37AA@ .

Учитывая лемму 4.2, можно оценить

d x ω( Δ u ) L ( e L(ϑ t 0 ) 1). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGKbWaaSbaaSqaaiaadIhaae qaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGccqWF 9PcHdaWcaaqaaiabeM8a3jaaiIcacqqHuoardaWgaaWcbaGaamyDaa qabaGccaaIPaaabaGaamitaaaacaaIOaGaamyzamaaCaaaleqabaGa amitaiaaiIcacqaHrpGscqGHsislcaWG0bWaaSbaaeaacaaIWaaabe aacaaIPaaaaOGaeyOeI0IaaGymaiaaiMcacaaIUaaaaa@553B@

Соответственно, в таком случае мы получим оценку

r(t) 3 8 M 2 Δ u 2 + ω 2 Δ u L 2 e L(ϑ t 0 ) 1 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaaiaahkhacaaIOaGaam iDaiaaiMcaaiaawMa7caGLkWoacqGHKjYOdaWcaaqaaiaaiodaaeaa caaI4aaaaiaayIW7caWGnbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaae aacqqHuoardaqhaaWcbaGaamyDaaqaaiaaikdaaaGccqGHRaWkdaWc aaqaaiabeM8a3naaCaaaleqabaGaaGOmaaaakmaabmaabaGaeuiLdq 0aaSbaaSqaaiaadwhaaeqaaaGccaGLOaGaayzkaaaabaGaamitamaa CaaaleqabaGaaGOmaaaaaaGcdaqadaqaaiaadwgadaahaaWcbeqaai aadYeacaaIOaGaeqy0dOKaeyOeI0IaamiDamaaBaaabaGaaGimaaqa baGaaGykaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaaakiaawIcacaGLPaaacaaIUaaaaa@5DC5@  (17)

Из сложения соответствующих уравнений выполняется следующее равенство:

d x (j) dt = λ 1 λ n f t, x (j,,,) , u (1;j,,,) + + 1 λ 1 1 λ n f t, x (j,+,,+) , u (1;j,+,,+) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaafaqabeGabaaabaWaaSaaaeaaca WGKbGaaKiEamaaCaaaleqabaGaaGikaiaadQgacaaIPaaaaaGcbaGa amizaiaadshaaaGaaGypaiabeU7aSnaaBaaaleaacaaIXaaabeaaki abl+UimjabeU7aSnaaBaaaleaacaWGUbaabeaakiaayIW7ieqacaWF MbWaaeWaaeaacaWG0bGaaGilaiaajIhadaahaaWcbeqaaiaaiIcaca WGQbGaaGilaiabgkHiTiaaiYcacqWIMaYscaaISaGaeyOeI0IaaGyk aaaakiaaiYcacaqI1bWaaWbaaSqabeaacaaIOaGaaGymaiaaiUdaca WGQbGaaGilaiabgkHiTiaaiYcacqWIMaYscaaISaGaeyOeI0IaaGyk aaaaaOGaayjkaiaawMcaaiabgUcaRiabl+Uimbqaaiabl+UimjabgU caRmaabmaabaGaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaa beaaaOGaayjkaiaawMcaaiabl+UimnaabmaabaGaaGymaiabgkHiTi abeU7aSnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaa=zga daqadaqaaiaadshacaaISaGaaKiEamaaCaaaleqabaGaaGikaiaadQ gacaaISaGaey4kaSIaaGilaiablAciljaaiYcacqGHRaWkcaaIPaaa aOGaaGilaiaajwhadaahaaWcbeqaaiaaiIcacaaIXaGaaG4oaiaadQ gacaaISaGaey4kaSIaaGilaiablAciljaaiYcacqGHRaWkcaaIPaaa aaGccaGLOaGaayzkaaGaaGOlaaaaaaa@8939@  (18)

Из (16)–(18) и условия C2 следует, что

x ^ (t) x (j) (t) = t 0 t f τ, x ^ τ , u ^ τ λ 1 λ n f τ, x (j,,,) τ , u (j,,,) τ 1 λ 1 1 λ n f τ, x (j,+,,+) τ , u (j,+,,+) τ dτ t 0 t f τ, x ^ τ , u ^ τ f τ, x (j) t , x ^ τ +r τ dτ L t 0 t x ^ τ x (j) τ dτ+ 3 8 M 2 Δ u 2 + ω 2 Δ u L 2 e L(ϑ t 0 ) 1 2 t t 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaafmaabaWaaecaaeaaca qI4baacaGLcmaacaaIOaGaamiDaiaaiMcacqGHsislcaqI4bWaaWba aSqabeaacaaIOaGaamOAaiaaiMcaaaGccaaIOaGaamiDaiaaiMcaai aawMa7caGLkWoacaaI9aWaauqaaeaadaWdXbqabSqaaiaadshadaWg aaqaaiaaicdaaeqaaaqaaiaadshaa0Gaey4kIipakmaabeaabaacbe Gaa8NzaaGaayjkaaWaaeWaaeaacqaHepaDcaaISaWaaecaaeaacaqI 4baacaGLcmaadaqadaqaaiabes8a0bGaayjkaiaawMcaaiaaiYcada qiaaqaaiaajwhaaiaawkWaamaabmaabaGaeqiXdqhacaGLOaGaayzk aaaacaGLOaGaayzkaaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaigdaae qaaOGaeS47IWKaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaaGPaVlaa =zgadaqadaqaaiabes8a0jaaiYcacaqI4bWaaWbaaSqabeaacaaIOa GaamOAaiaaiYcacqGHsislcaaISaGaeSOjGSKaaGilaiabgkHiTiaa iMcaaaGcdaqadaqaaiabes8a0bGaayjkaiaawMcaaiaaiYcacaqI1b WaaWbaaSqabeaacaaIOaGaamOAaiaaiYcacqGHsislcaaISaGaeSOj GSKaaGilaiabgkHiTiaaiMcaaaGcdaqadaqaaiabes8a0bGaayjkai aawMcaaaGaayjkaiaawMcaaiabgkHiTiabl+UimbGaayzcSdaabaWa auGaaeaafaqabeWabaaabaaabaaabaaaaiabl+UimjabgkHiTmaabm aabaGaaGymaiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaabeaaaOGa ayjkaiaawMcaaiabl+UimnaabmaabaGaaGymaiabgkHiTiabeU7aSn aaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaa=zgadaqacaqa amaabmaabaGaeqiXdqNaaGilaiaajIhadaahaaWcbeqaaiaaiIcaca WGQbGaaGilaiabgUcaRiaaiYcacqWIMaYscaaISaGaey4kaSIaaGyk aaaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGilaiaajwhada ahaaWcbeqaaiaaiIcacaWGQbGaaGilaiabgUcaRiaaiYcacqWIMaYs caaISaGaey4kaSIaaGykaaaakmaabmaabaGaeqiXdqhacaGLOaGaay zkaaaacaGLOaGaayzkaaaacaGLPaaacaWGKbGaeqiXdqhacaGLkWoa cqGHKjYOaeaacqGHKjYOdaWdXbqabSqaaiaadshadaWgaaqaaiaaic daaeqaaaqaaiaadshaa0Gaey4kIipakmaafmaabaGaa8Nzamaabmaa baGaeqiXdqNaaGilamaaHaaabaGaaKiEaaGaayPadaWaaeWaaeaacq aHepaDaiaawIcacaGLPaaacaaISaWaaecaaeaacaqI1baacaGLcmaa daqadaqaaiabes8a0bGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgk HiTiaa=zgadaqadaqaaiabes8a0jaaiYcacaWH4bWaaWbaaSqabeaa caaIOaGaamOAaiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPa aacaaISaWaaecaaeaacaqI4baacaGLcmaadaqadaqaaiabes8a0bGa ayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiaahkhadaqadaqaai abes8a0bGaayjkaiaawMcaaaGaayzcSlaawQa7aiaadsgacqaHepaD cqGHKjYOaeaacqGHKjYOcaWGmbWaa8qCaeqaleaacaWG0bWaaSbaae aacaaIWaaabeaaaeaacaWG0baaniabgUIiYdGcdaqbdaqaamaaHaaa baGaaKiEaaGaayPadaWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacq GHsislcaqI4bWaaWbaaSqabeaacaaIOaGaamOAaiaaiMcaaaGcdaqa daqaaiabes8a0bGaayjkaiaawMcaaaGaayzcSlaawQa7aiaadsgacq aHepaDcaaMi8Uaey4kaSIaaGjcVpaalaaabaGaaG4maaqaaiaaiIda aaGaaGjcVlaad2eadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiabfs 5aenaaDaaaleaacaWG1baabaGaaGOmaaaakiabgUcaRmaalaaabaGa eqyYdC3aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacqqHuoardaWgaa WcbaGaamyDaaqabaaakiaawIcacaGLPaaaaeaacaWGmbWaaWbaaSqa beaacaaIYaaaaaaakmaabmaabaGaamyzamaaCaaaleqabaGaamitai aaiIcacqaHrpGscqGHsislcaWG0bWaaSbaaeaacaaIWaaabeaacaaI PaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaaaOGaayjkaiaawMcaaiaayIW7daqadaqaaiaadshacqGHsisl caWG0bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaaGOlaa aaaa@35AE@

Отсюда, в силу усиленной леммы Гронуолла (см. [25, гл. §1, §2, c. 26]) следует, что

x ^ t y t 3 M 2 8L Δ u 2 + ω 2 Δ u L 2 e L(ϑ t 0 ) 1 2 e L(t t 0 ) 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaaHaaabaGaaKiEaa GaayPadaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0IaaKyE amaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayzcSlaawQa7aiabgs MiJoaalaaabaGaaG4maiaad2eadaWgaaWcbaGaaGOmaaqabaaakeaa caaI4aGaamitaaaacaaMi8+aaeWaaeaacqqHuoardaqhaaWcbaGaam yDaaqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiabeM8a3naaCaaaleqa baGaaGOmaaaakmaabmaabaGaeuiLdq0aaSbaaSqaaiaadwhaaeqaaa GccaGLOaGaayzkaaaabaGaamitamaaCaaaleqabaGaaGOmaaaaaaGc daqadaqaaiaadwgadaahaaWcbeqaaiaadYeacaaIOaGaeqy0dOKaey OeI0IaamiDamaaBaaabaGaaGimaaqabaGaaGykaaaakiabgkHiTiaa igdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIcaca GLPaaacaaMi8+aaeWaaeaacaWGLbWaaWbaaSqabeaacaWGmbGaaGjc VlaaiIcacaWG0bGaeyOeI0IaamiDamaaBaaabaGaaGimaaqabaGaaG ykaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaaIUaaaaa@715B@

В частности,

x ^ ϑ y ϑ 3 M 2 8L Δ u 2 + ω 2 Δ u L 2 e L(ϑ t 0 ) 1 2 e L(ϑ t 0 ) 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaaHaaabaGaamiEaa GaayPadaWaaeWaaeaacqaHrpGsaiaawIcacaGLPaaacqGHsislcaWG 5bWaaeWaaeaacqaHrpGsaiaawIcacaGLPaaaaiaawMa7caGLkWoacq GHKjYOdaWcaaqaaiaaiodacaWGnbWaaSbaaSqaaiaaikdaaeqaaaGc baGaaGioaiaadYeaaaGaaGjcVpaabmaabaGaeuiLdq0aa0baaSqaai aadwhaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaacqaHjpWDdaahaaWc beqaaiaaikdaaaGcdaqadaqaaiabfs5aenaaBaaaleaacaWG1baabe aaaOGaayjkaiaawMcaaaqaaiaadYeadaahaaWcbeqaaiaaikdaaaaa aOWaaeWaaeaacaWGLbWaaWbaaSqabeaacaWGmbGaaGikaiabeg9akj abgkHiTiaadshadaWgaaqaaiaaicdaaeqaaiaaiMcaaaGccqGHsisl caaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOa GaayzkaaGaaGjbVlaayIW7daqadaqaaiaadwgadaahaaWcbeqaaiaa dYeacaaMi8UaaGikaiabeg9akjabgkHiTiaadshadaWgaaqaaiaaic daaeqaaiaaiMcaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaGaaGOl aaaa@74E9@

Отсюда и из (15) получаем, что

x ^ (ϑ) x ¯ (N,j) 3 M 2 8L Δ u 2 + ω 2 Δ u L 2 e L(ϑ t 0 ) 1 2 × e L(ϑ t 0 ) 1 +δ ϑ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqbdaqaamaaHaaabaGaamiEaa GaayPadaGaaGikaiabeg9akjaaiMcacqGHsisldaqdaaqaaiaadIha aaWaaWbaaSqabeaacaaIOaGaamOtaiaaiYcacaWGQbGaaGykaaaaaO GaayzcSlaawQa7aiabgsMiJoaalaaabaGaaG4maiaad2eadaWgaaWc baGaaGOmaaqabaaakeaacaaI4aGaamitaaaacaaMi8+aaeWaaeaacq qHuoardaqhaaWcbaGaamyDaaqaaiaaikdaaaGccqGHRaWkdaWcaaqa aiabeM8a3naaCaaaleqabaGaaGOmaaaakmaabmaabaGaeuiLdq0aaS baaSqaaiaadwhaaeqaaaGccaGLOaGaayzkaaaabaGaamitamaaCaaa leqabaGaaGOmaaaaaaGcdaqadaqaaiaadwgadaahaaWcbeqaaiaadY eacaaIOaGaeqy0dOKaeyOeI0IaamiDamaaBaaabaGaaGimaaqabaGa aGykaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaacaaMe8UaaGjcVlabgEna0kaaysW7 daqadaqaaiaadwgadaahaaWcbeqaaiaadYeacaaMi8UaaGikaiabeg 9akjabgkHiTiaadshadaWgaaqaaiaaicdaaeqaaiaaiMcaaaGccqGH sislcaaIXaaacaGLOaGaayzkaaGaey4kaSIaeqiTdq2aaeWaaeaacq aHrpGsaiaawIcacaGLPaaacaaIUaaaaa@7F14@

С учетом (12) получаем утверждение теоремы.

Замечание 4.3. Если учесть, что Δ u (j) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaqhaaWcbaGaamyDaa qaaiaaiIcacaWGQbGaaGykaaaaaaa@3A80@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  это минимальная величина, при которой интегральная воронка, соответствующая сужению управления P j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGqbGbaqbadaWgaaWcbaGaam OAaaqabaaaaa@37AA@ , накрывает своим последним временны`м сечением куб K j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaadQgaae qaaaaa@378A@ , то можно предполагать, что для многих систем (или при некоторых дополнительных условиях) d x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGKbWaaSbaaSqaaiaadIhaae qaaaaa@37B1@  будет величиной сопоставимой с диагональю наибольшего куба K j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaadQgaae qaaaaa@378A@ , т.е. O( Δ f ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGpbGaaGikaiabfs5aenaaBa aaleaacaWGMbaabeaakiaaiMcaaaa@3A5F@ .

5. ПРИМЕР

В качестве примера управляемой системы рассмотрим модифицированную математическую модель машины Дубинса. Пусть на промежутке времени [ t 0 ,ϑ]=[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca aIWaaabeaakiaaiYcacqaHrpGscaaIDbGaaGypaiaaiUfacaaIWaGa aGilaiaayIW7caaIXaGaaGyxaaaa@4201@  задана управляемая система

  x ˙ t = u 2 t cosφ t , y ˙ t = u 2 t sinφ t , φ ˙ t = u 1 t ,x 0 = x (0) = 0,0,0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaaiqadIhagaGaamaabmaaba GaamiDaaGaayjkaiaawMcaaiaai2dacaWG1bWaaSbaaSqaaiaaikda aeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaci4yaiaac+gaca GGZbGaeqOXdO2aaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGilaiaa ysW7caaMe8UabmyEayaacaWaaeWaaeaacaWG0baacaGLOaGaayzkaa GaaGypaiaadwhadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadsha aiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gacqaHgpGAdaqadaqaai aadshaaiaawIcacaGLPaaacaaISaaabaGafqOXdOMbaiaadaqadaqa aiaadshaaiaawIcacaGLPaaacaaI9aGaamyDamaaBaaaleaacaaIXa aabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaaiYcacaaMe8Ua aGjbVJqabiaa=HhadaqadaqaaiaaicdaaiaawIcacaGLPaaacaaI9a Gaa8hEamaaCaaaleqabaGaaGikaiaaicdacaaIPaaaaOGaaGypamaa bmaabaGaaGimaiaaiYcacaaIWaGaaGilaiaaicdaaiaawIcacaGLPa aacaaISaaaaaa@7519@  (19)

где t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0baaaa@3698@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  время, x=(x(t),y(t),φ(t)) 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGypaiaaiIcacaWG4b GaaGikaiaadshacaaIPaGaaGilaiaadMhacaaIOaGaamiDaiaaiMca caaISaGaeqOXdOMaaGikaiaadshacaaIPaGaaGykaiabgIGioprr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaWba aSqabeaacaaIZaaaaaaa@5231@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  вектор фазового состояния управляемой системы, x(0)= x (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGikaiaaicdacaaIPa GaaGypaiaajIhadaahaaWcbeqaaiaaiIcacaaIWaGaaGykaaaaaaa@3CD7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  начальное состояние системы, u(t)=( u 1 (t), u 2 (t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI1bGaaGikaiaadshacaaIPa GaaGypaiaaiIcacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dshacaaIPaGaaGilaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiDaiaaiMcacaaIPaaaaa@4472@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  измеримая по Лебегу вектор-функция управления со значениями из P={ u 1 , u 2 :1 u 1 1,0 u 2 2} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGqbGaaGypaiaaiUhadaqada qaaiaadwhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyDamaaBaaa leaacaaIYaaabeaaaOGaayjkaiaawMcaaiaaiQdacqGHsislcaaIXa Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWF9PcH caWG1bWaaSbaaSqaaiaaigdaaeqaaOGae8xFQqOaaGymaiaaiYcaca aIWaGae8xFQqOaamyDamaaBaaaleaacaaIYaaabeaakiab=1Nkekaa ikdacaaI9baaaa@58E9@ .

Задача состоит в быстром предъявлении разрешающего программного управления u()= u(t): t 0 tϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWF1bGaaGikaiaayIW7cq GHflY1caaMi8UaaGykaiaai2dadaGadaqaaiaa=vhacaaIOaGaamiD aiaaiMcacaaI6aGaamiDamaaBaaaleaacaaIWaaabeaatuuDJXwAK1 uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaOGae4xFQqOaamiDaiab +1Nkekabeg9akbGaay5Eaiaaw2haaaaa@560A@ , которое бы переводило движение x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bGaaGikaiaadshacaaIPa aaaa@3900@  управляемой системы (19) из начальной точки x (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG4bWaaWbaaSqabeaacaaIOa GaaGimaiaaiMcaaaaaaa@38E8@  в малую окрестность точки x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391F@ , координаты которой будут сообщены в начальный момент t 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaicdaae qaaOGaaGypaiaaicdaaaa@3909@ . Вместе с тем, заранее известно, что целевая точка x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391F@  будет принадлежать множеству M=[0.7,0.9]×[0.1,0.3]×[0.4,0.6] 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGnbGaaGypaiaaiUfacaaIWa GaaGOlaiaaiEdacaaISaGaaGjcVlaaicdacaaIUaGaaGyoaiaai2fa cqGHxdaTcaaIBbGaaGimaiaai6cacaaIXaGaaGilaiaayIW7caaIWa GaaGOlaiaaiodacaaIDbGaey41aqRaaG4waiaaicdacaaIUaGaaGin aiaaiYcacaaMi8UaaGimaiaai6cacaaI2aGaaGyxaiabgkOimprr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaWba aSqabeaacaaIZaaaaaaa@6262@ . Кроме того, предположим, что начальное состояние x (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaaGimaiaaiMcaaaaaaa@38EC@  системы (19) известно без погрешности, т.е. δ x =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaH0oazdaWgaaWcbaGaamiEaa qabaGccaaI9aGaaGimaaaa@39F8@ .

Итак, выполним алгоритм 1.

1. Выберем N=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGobGaaGypaiaaikdaaaa@37F5@ , тогда имеем разбиение Γ= t 0 =0, t 1 =0.5, t 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHtoWrcaaI9aWaaiWaaeaaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGypaiaaicdacaaISaGaamiD amaaBaaaleaacaaIXaaabeaakiaai2dacaaIWaGaaGOlaiaaiwdaca aISaGaamiDamaaBaaaleaacaaIYaaabeaakiaai2dacaaIXaaacaGL 7bGaayzFaaaaaa@4724@  c диаметром Δ t =0.5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamiDaa qabaGccaaI9aGaaGimaiaai6cacaaI1aaaaa@3B2C@ . Также выберем N 1 = N 2 =100 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGobWaaSbaaSqaaiaaigdaae qaaOGaaGypaiaad6eadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGym aiaaicdacaaIWaaaaa@3CE5@ , на отрезке [ t 0 , t 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca aIWaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGyx aaaa@3BF4@  введем подразбиение

Γ 1 = t 0,0 = t 0 =0, t 0,1 = t 0 + Δ t 100 =0.005,, t 0,k = t 0 + k Δ t 100 ,, t 0, N 1 = t 1 =0.5 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGymaa qabaGccaaI9aWaaiWaaeaacaWG0bWaaSbaaSqaaiaaicdacaaISaGa aGimaaqabaGccaaI9aGaamiDamaaBaaaleaacaaIWaaabeaakiaai2 dacaaIWaGaaGilaiaayIW7caWG0bWaaSbaaSqaaiaaicdacaaISaGa aGymaaqabaGccaaI9aGaamiDamaaBaaaleaacaaIWaaabeaakiabgU caRmaalaaabaGaeuiLdq0aaSbaaSqaaiaadshaaeqaaaGcbaGaaGym aiaaicdacaaIWaaaaiaai2dacaaIWaGaaGOlaiaaicdacaaIWaGaaG ynaiaaiYcacaaMi8UaeSOjGSKaaGilaiaaysW7caaMe8UaaGjbVlaa dshadaWgaaWcbaGaaGimaiaaiYcacaWGRbaabeaakiaai2dacaWG0b WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSYaaSaaaeaacaWGRbGaeuiL dq0aaSbaaSqaaiaadshaaeqaaaGcbaGaaGymaiaaicdacaaIWaaaai aaiYcacaaMi8UaeSOjGSKaaGilaiaayIW7caWG0bWaaSbaaSqaaiaa icdacaaISaGaamOtamaaBaaabaGaaGymaaqabaaabeaakiaai2daca WG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaicdacaaIUaGaaGyn aaGaay5Eaiaaw2haaiaaiYcaaaa@7AF5@

на отрезке [ t 1 , t 2 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaIBbGaamiDamaaBaaaleaaca aIXaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGyx aaaa@3BF6@  введем подразбиение

Γ 2 = t 1,0 = t 1 =0.5, t 1,1 = t 1 + Δ t 100 =0.505,, t 1,k = t 1 + k Δ t 100 ,, t 1, N 1 = t 2 =1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGOmaa qabaGccaaI9aWaaiWaaeaacaWG0bWaaSbaaSqaaiaaigdacaaISaGa aGimaaqabaGccaaI9aGaamiDamaaBaaaleaacaaIXaaabeaakiaai2 dacaaIWaGaaGOlaiaaiwdacaaISaGaaGjcVlaadshadaWgaaWcbaGa aGymaiaaiYcacaaIXaaabeaakiaai2dacaWG0bWaaSbaaSqaaiaaig daaeqaaOGaey4kaSYaaSaaaeaacqqHuoardaWgaaWcbaGaamiDaaqa baaakeaacaaIXaGaaGimaiaaicdaaaGaaGypaiaaicdacaaIUaGaaG ynaiaaicdacaaI1aGaaGilaiaayIW7cqWIMaYscaaISaGaaGjbVlaa ysW7caaMe8UaamiDamaaBaaaleaacaaIXaGaaGilaiaadUgaaeqaaO GaaGypaiaadshadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqa aiaadUgacqqHuoardaWgaaWcbaGaamiDaaqabaaakeaacaaIXaGaaG imaiaaicdaaaGaaGilaiaayIW7cqWIMaYscaaISaGaaGjcVlaadsha daWgaaWcbaGaaGymaiaaiYcacaWGobWaaSbaaeaacaaIXaaabeaaae qaaOGaaGypaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGym aaGaay5Eaiaaw2haaiaai6caaaa@7B06@

2. Выберем Δ x = 3 /50 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamiEaa qabaGccaaI9aWaaOaaaeaacaaIZaaaleqaaOGaaG4laiaaiwdacaaI Waaaaa@3C13@  и вычислим множества достижимости X ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aaBaaaleaacaaIXaaabeaaaaa@3825@  и X ˜ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aaBaaaleaacaaIYaaabeaaaaa@3826@ , соответствующие моментам времени t 1 =0.5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaigdaae qaaOGaaGypaiaaicdacaaIUaGaaGynaaaa@3A81@  и t 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaikdaae qaaOGaaGypaiaaigdaaaa@390C@  (сечение X ˜ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaam aaBaaaleaacaaIYaaabeaaaaa@3826@  плоскостью x=0.8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG4bGaaGypaiaaicdacaaIUa GaaGioaaaa@3997@  изображено на фиг. 1).

3. Поскольку хаусдорфово отклонение h M, X ˜ 2 = max xM min y X ˜ 2 xy Δ x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGObWaaeWaaeaacaWGnbGaaG ilamaaGaaabaGaamiwaaGaay5adaWaaSbaaSqaaiaaikdaaeqaaaGc caGLOaGaayzkaaGaaGypamaaxababaGaaeyBaiaabggacaqG4baale aacaqI4bGaeyicI4SaamytaaqabaGccaaMi8+aaCbeaeaacaqGTbGa aeyAaiaab6gaaSqaaiaajMhacqGHiiIZdaaiaaqaaiaadIfaaiaawo WaamaaBaaabaGaaGOmaaqabaaabeaaimaakiab=vIiqjaajIhacqGH sislcaqI5bGae8xjIa1efv3ySLgznfgDOjdaryqr1ngBPrginfgDOb cv39gaiqaacqGF9PcHcqqHuoardaWgaaWcbaGaamiEaaqabaaaaa@601C@  (см. фиг. 1), то мы заключаем, что задача 1 разрешима для любой точки x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391D@ , которая будет сообщена в момент времени t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaicdaae qaaaaa@377E@ .

4. Выберем Δ f =0.1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamOzaa qabaGccaaI9aGaaGimaiaai6cacaaIXaaaaa@3B1A@ , M ˜ ={ x (f,1) } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaad2eaaiaawoWaai aai2dacaaI7bGaamiEamaaCaaaleqabaGaaGikaiaadAgacaaISaGa aGymaiaaiMcaaaGccaaI9baaaa@3EFB@ , x (f,1) =(0.8,0.2,0.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiYcacaaIXaGaaGykaaaakiaai2dacaaIOaGaaGimaiaa i6cacaaI4aGaaGilaiaaicdacaaIUaGaaGOmaiaaiYcacaaIWaGaaG OlaiaaiwdacaaIPaaaaa@44C5@ , т.е. N f =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGobWaaSbaaSqaaiaadAgaae qaaOGaaGypaiaaigdaaaa@3915@ , K 1 =M=[0.7,0.9]×[0.1,0.3]×[0.4,0.6] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaaigdaae qaaOGaaGypaiaad2eacaaI9aGaaG4waiaaicdacaaIUaGaaG4naiaa iYcacaaMi8UaaGimaiaai6cacaaI5aGaaGyxaiabgEna0kaaiUfaca aIWaGaaGOlaiaaigdacaaISaGaaGjcVlaaicdacaaIUaGaaG4maiaa i2facqGHxdaTcaaIBbGaaGimaiaai6cacaaI0aGaaGilaiaayIW7ca aIWaGaaGOlaiaaiAdacaaIDbaaaa@574D@  (см. фиг. 1).

5. Поскольку чистым перебором найти минимально возможное значение Δ u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamyDaa qabaaaaa@382B@  затруднительно, то мы найдем квазиоптимальное решение следующим образом. Сперва заметим, что управление v(t)=( v 1 (t), v 2 (t))=(0.5,0.831) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH2bGaaGikaiaadshacaaIPa GaaGypaiaaiIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dshacaaIPaGaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiDaiaaiMcacaaIPaGaaGypaiaaiIcacaaIWaGaaGOlaiaaiwda caaISaGaaGimaiaai6cacaaI4aGaaG4maiaaigdacaaIPaaaaa@4D32@  при t[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bGaeyicI4SaaG4waiaaic dacaaISaGaaGymaiaai2faaaa@3C13@  приводит состояние системы x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bGaaGikaiaadshacaaIPa aaaa@38FE@  в точку x (1) =(0.797,0.203,0.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaaGymaiaaiMcaaaGccaaI9aGaaGikaiaaicdacaaIUaGaaG4naiaa iMdacaaI3aGaaGilaiaaicdacaaIUaGaaGOmaiaaicdacaaIZaGaaG ilaiaaicdacaaIUaGaaGynaiaaiMcaaaa@461C@ , т.е. практически в центр куба K 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaaigdaae qaaaaa@3756@ . В связи с этим искомые кусочно постоянные управления, выводящие движение системы на вершины куба K 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaaigdaae qaaaaa@3756@ , будем искать в виде суммы управлений u ¯ (1,±,±,±) (t)=v(t)+ w (±,±,±) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaahwhaaaWaaWbaaS qabeaacaaIOaGaaGymaiaaiYcacqGHXcqScaaISaGaeyySaeRaaGil aiabgglaXkaaiMcaaaGccaaIOaGaamiDaiaaiMcacaaI9aGaaCODai aaiIcacaWG0bGaaGykaiabgUcaRiaahEhadaahaaWcbeqaaiaaiIca cqGHXcqScaaISaGaeyySaeRaaGilaiabgglaXkaaiMcaaaGccaaIOa GaamiDaiaaiMcaaaa@5485@  и для каждой вершины x (f,1,±,±,±) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiYcacaaIXaGaaGilaiabgglaXkaaiYcacqGHXcqScaaI SaGaeyySaeRaaGykaaaaaaa@427A@  будем минимизировать max t[ t 0 ,ϑ] w (±,±,±) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaGfqbqabSqaaiaadshacqGHii IZcaaIBbGaamiDamaaBaaabaGaaGimaaqabaGaaGilaiabeg9akjaa i2faaeqakeaaciGGTbGaaiyyaiaacIhaaaacdaGae8xjIaLaaC4Dam aaCaaaleqabaGaaGikaiabgglaXkaaiYcacqGHXcqScaaISaGaeyyS aeRaaGykaaaakiaaiIcacaWG0bGaaGykaiab=vIiqbaa@4FE5@ . Последняя задача минимизации нормы имеет уже приемлемую размерность и вполне может быть решена, например, методом циклического покоординатного спуска (см. [26, гл. 7, §3]).

 

Фиг. 1. Сечения множеств M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGnbaaaa@3671@ , M ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaad2eaaiaawoWaaa aa@3733@  и X ˜ (ϑ, t 0 , x (0) ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaaiaaqaaiaadIfaaiaawoWaai aaiIcacqaHrpGscaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaa iYcacaWH4bWaaWbaaSqabeaacaaIOaGaaGimaiaaiMcaaaGccaaIPa aaaa@40F7@  плоскостью x=0.8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG4bGaaGypaiaaicdacaaIUa GaaGioaaaa@3997@ .

 

В результате было найдено сужение управления

P (t)= [0.114,0.866]×[0.331,1.331],t[0,0.5), [0,1)×[0.417,1.202],t[0.5,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGqbGbaqbacaaIOaGaamiDai aaiMcacaaI9aWaaiqaaeaafaqaaeGabaaabaGaaG4waiaaicdacaaI UaGaaGymaiaaigdacaaI0aGaaGilaiaaicdacaaIUaGaaGioaiaaiA dacaaI2aGaaGyxaiabgEna0kaaiUfacaaIWaGaaGOlaiaaiodacaaI ZaGaaGymaiaaiYcacaaIXaGaaGOlaiaaiodacaaIZaGaaGymaiaai2 facaaISaGaaGzbVlaadshacqGHiiIZcaaIBbGaaGimaiaaiYcacaaI WaGaaGOlaiaaiwdacaaIPaGaaGilaaqaaiaaiUfacaaIWaGaaGilai aaigdacaaIPaGaey41aqRaaG4waiaaicdacaaIUaGaaGinaiaaigda caaI3aGaaGilaiaaigdacaaIUaGaaGOmaiaaicdacaaIYaGaaGyxai aacYcacaaMf8UaamiDaiabgIGiolaaiUfacaaIWaGaaGOlaiaaiwda caaISaGaaGymaiaai2facaaISaaaaaGaay5Eaaaaaa@75DA@

с диаметром Δ u = max t[ t 0 ,ϑ] diam( P (t))= max t[ t 0 ,ϑ] max u,v P (t) ||uv||=1.271 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamyDaa qabaGccaaI9aWaaybuaeqaleaacaWG0bGaeyicI4SaaG4waiaadsha daWgaaqaaiaaicdaaeqaaiaaiYcacqaHrpGscaaIDbaabeGcbaGaci yBaiaacggacaGG4baaaiaabsgacaqGPbGaaeyyaiaab2gacaaIOaGa bmiuayaauaGaaGikaiaadshacaaIPaGaaGykaiaai2dadaGfqbqabS qaaiaadshacqGHiiIZcaaIBbGaamiDamaaBaaabaGaaGimaaqabaGa aGilaiabeg9akjaai2faaeqakeaaciGGTbGaaiyyaiaacIhaaaWaay buaeqaleaacaWH1bGaaGilaiaahAhacqGHiiIZceWGqbGbaqbacaaI OaGaamiDaiaaiMcaaeqakeaaciGGTbGaaiyyaiaacIhaaaGaaGiFai aaiYhacaWH1bGaeyOeI0IaaCODaiaaiYhacaaI8bGaaGypaiaaigda caaIUaGaaGOmaiaaiEdacaaIXaaaaa@7014@ .

6. Были выбраны x ¯ (N,1,±,±,±) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaahIhaaaWaaWbaaS qabeaacaaIOaGaamOtaiaaiYcacaaIXaGaaGilaiabgglaXkaaiYca cqGHXcqScaaISaGaeyySaeRaaGykaaaaaaa@4273@ , ближайшие к x (N,1,±,±,±) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWH4bWaaWbaaSqabeaacaaIOa GaamOtaiaaiYcacaaIXaGaaGilaiabgglaXkaaiYcacqGHXcqScaaI SaGaeyySaeRaaGykaaaaaaa@4262@ , и соответствующие им кусочно постоянные управления u ¯ (1,±,±,±) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaahwhaaaWaaWbaaS qabeaacaaIOaGaaGymaiaaiYcacqGHXcqScaaISaGaeyySaeRaaGil aiabgglaXkaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@434F@  со значениями из P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaceWGqbGbaqbaaaa@368F@ . Для дальнейшего выполнения алгоритма 2 достаточно запомнить только следующие кусочно-постоянные «узловые» управления:

u ¯ (1,,,) t = 0.156,0.684 ,t 0,0.5 , 0.644,0.741 ,t 0.5,1 , u ¯ (1,,,+) t = 0.226,1.015 ,t 0,0.5 , 0.974,0.417 ,t 0.5,1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajwhaaaWaaWbaaS qabeaacaaIOaGaaGymaiaaiYcacqGHsislcaaISaGaeyOeI0IaaGil aiabgkHiTiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaca aI9aWaaiqaaeaafaqaaeGabaaabaWaaeWaaeaacaaIWaGaaGOlaiaa igdacaaI1aGaaGOnaiaaiYcacaaIWaGaaGOlaiaaiAdacaaI4aGaaG inaaGaayjkaiaawMcaaiaaiYcacaaMf8UaamiDaiabgIGiopaajiba baGaaGimaiaaiYcacaaIWaGaaGOlaiaaiwdaaiaawUfacaGLPaaaca aISaaabaWaaeWaaeaacaaIWaGaaGOlaiaaiAdacaaI0aGaaGinaiaa iYcacaaIWaGaaGOlaiaaiEdacaaI0aGaaGymaaGaayjkaiaawMcaai aaiYcacaaMf8UaamiDaiabgIGiopaadmaabaGaaGimaiaai6cacaaI 1aGaaGilaiaaigdaaiaawUfacaGLDbaacaaISaaaaaGaay5EaaGaaG jbVlaaysW7daqdaaqaaiaajwhaaaWaaWbaaSqabeaacaaIOaGaaGym aiaaiYcacqGHsislcaaISaGaeyOeI0IaaGilaiabgUcaRiaaiMcaaa GcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaI9aWaaiqaaeaafaqa aeGabaaabaWaaeWaaeaacaaIWaGaaGOlaiaaikdacaaIYaGaaGOnai aaiYcacaaIXaGaaGOlaiaaicdacaaIXaGaaGynaaGaayjkaiaawMca aiaaiYcacaaMf8UaamiDaiabgIGiopaajibabaGaaGimaiaaiYcaca aIWaGaaGOlaiaaiwdaaiaawUfacaGLPaaacaaISaaabaWaaeWaaeaa caaIWaGaaGOlaiaaiMdacaaI3aGaaGinaiaaiYcacaaIWaGaaGOlai aaisdacaaIXaGaaG4naaGaayjkaiaawMcaaiaaiYcacaaMf8UaamiD aiabgIGiopaadmaabaGaaGimaiaai6cacaaI1aGaaGilaiaaigdaai aawUfacaGLDbaacaaISaaaaaGaay5Eaaaaaa@A47F@

u ¯ (1,,+,) t = 0.844,0.331 ,t 0,0,5 , 0,1.202 ,t 0.5,1 , u ¯ (1,,+,+) t = 0.866,0.586 ,t 0,0.5 , 0.335,0.959 ,t 0.5,1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajwhaaaWaaWbaaS qabeaacaaIOaGaaGymaiaaiYcacqGHsislcaaISaGaey4kaSIaaGil aiabgkHiTiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaca aI9aWaaiqaaeaafaqaaeGabaaabaWaaeWaaeaacaaIWaGaaGOlaiaa iIdacaaI0aGaaGinaiaaiYcacaaIWaGaaGOlaiaaiodacaaIZaGaaG ymaaGaayjkaiaawMcaaiaaiYcacaaMf8UaamiDaiabgIGiopaajiba baGaaGimaiaaiYcacaaIWaGaaGilaiaaiwdaaiaawUfacaGLPaaaca aISaaabaWaaeWaaeaacaaIWaGaaGilaiaaigdacaaIUaGaaGOmaiaa icdacaaIYaaacaGLOaGaayzkaaGaaGilaiaaywW7caWG0bGaeyicI4 8aamWaaeaacaaIWaGaaGOlaiaaiwdacaaISaGaaGymaaGaay5waiaa w2faaiaaiYcaaaaacaGL7baacaaMf8+aa0aaaeaacaqI1baaamaaCa aaleqabaGaaGikaiaaigdacaaISaGaeyOeI0IaaGilaiabgUcaRiaa iYcacqGHRaWkcaaIPaaaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaa GaaGypamaaceaabaqbaeaabiqaaaqaamaabmaabaGaaGimaiaai6ca caaI4aGaaGOnaiaaiAdacaaISaGaaGimaiaai6cacaaI1aGaaGioai aaiAdaaiaawIcacaGLPaaacaaISaGaaGzbVlaadshacqGHiiIZdaqc saqaaiaaicdacaaISaGaaGimaiaai6cacaaI1aaacaGLBbGaayzkaa GaaGilaaqaamaabmaabaGaaGimaiaai6cacaaIZaGaaG4maiaaiwda caaISaGaaGimaiaai6cacaaI5aGaaGynaiaaiMdaaiaawIcacaGLPa aacaaISaGaaGzbVlaadshacqGHiiIZdaWadaqaaiaaicdacaaIUaGa aGynaiaaiYcacaaIXaaacaGLBbGaayzxaaGaaGilaaaaaiaawUhaaa aa@9FF1@

u ¯ (1,+,,) t = 0.114,1.082 ,t 0,0.5 , 0.68,0.742 ,t 0.5,1 , u ¯ (1,+,,+) t = 0.185,1.331 ,t 0,0.5 , 1,0.495 ,t 0.5,1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaahwhaaaWaaWbaaS qabeaacaaIOaGaaGymaiaaiYcacqGHRaWkcaaISaGaeyOeI0IaaGil aiabgkHiTiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaca aI9aWaaiqaaeaafaqaaeGabaaabaWaaeWaaeaacaaIWaGaaGOlaiaa igdacaaIXaGaaGinaiaaiYcacaaIXaGaaGOlaiaaicdacaaI4aGaaG OmaaGaayjkaiaawMcaaiaaiYcacaaMf8UaamiDaiabgIGiopaajiba baGaaGimaiaaiYcacaaIWaGaaGOlaiaaiwdaaiaawUfacaGLPaaaca aISaaabaWaaeWaaeaacaaIWaGaaGOlaiaaiAdacaaI4aGaaGilaiaa icdacaaIUaGaaG4naiaaisdacaaIYaaacaGLOaGaayzkaaGaaGilai aaywW7caWG0bGaeyicI48aamWaaeaacaaIWaGaaGOlaiaaiwdacaaI SaGaaGymaaGaay5waiaaw2faaiaaiYcaaaaacaGL7baacaaMe8UaaG jbVpaanaaabaGaaKyDaaaadaahaaWcbeqaaiaaiIcacaaIXaGaaGil aiabgUcaRiaaiYcacqGHsislcaaISaGaey4kaSIaaGykaaaakmaabm aabaGaamiDaaGaayjkaiaawMcaaiaai2dadaGabaqaauaabaqaceaa aeaadaqadaqaaiaaicdacaaIUaGaaGymaiaaiIdacaaI1aGaaGilai aaigdacaaIUaGaaG4maiaaiodacaaIXaaacaGLOaGaayzkaaGaaGil aiaaywW7caWG0bGaeyicI48aaKGeaeaacaaIWaGaaGilaiaaicdaca aIUaGaaGynaaGaay5waiaawMcaaiaaiYcaaeaadaqadaqaaiaaigda caaISaGaaGimaiaai6cacaaI0aGaaGyoaiaaiwdaaiaawIcacaGLPa aacaaISaGaaGzbVlaadshacqGHiiIZdaWadaqaaiaaicdacaaIUaGa aGynaiaaiYcacaaIXaaacaGLBbGaayzxaaGaaGilaaaaaiaawUhaaa aa@A0B3@

u ¯ (1,+,+,) t = 0.802,0.766 ,t 0,0.5 , 0,1.146 ,t 0.5,1 , u ¯ (1,+,+,+) t = 0.743,1.055 ,t 0,0.5 , 0.457,0.872 ,t 0.5,1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqdaaqaaiaajwhaaaWaaWbaaS qabeaacaaIOaGaaGymaiaaiYcacqGHRaWkcaaISaGaey4kaSIaaGil aiabgkHiTiaaiMcaaaGcdaqadaqaaiaadshaaiaawIcacaGLPaaaca aI9aWaaiqaaeaafaqaaeGabaaabaWaaeWaaeaacaaIWaGaaGOlaiaa iIdacaaIWaGaaGOmaiaaiYcacaaIWaGaaGOlaiaaiEdacaaI2aGaaG OnaaGaayjkaiaawMcaaiaaiYcacaaMf8UaamiDaiabgIGiopaajiba baGaaGimaiaaiYcacaaIWaGaaGOlaiaaiwdaaiaawUfacaGLPaaaca aISaaabaWaaeWaaeaacaaIWaGaaGilaiaaigdacaaIUaGaaGymaiaa isdacaaI2aaacaGLOaGaayzkaaGaaGilaiaaywW7caWG0bGaeyicI4 8aamWaaeaacaaIWaGaaGOlaiaaiwdacaaISaGaaGymaaGaay5waiaa w2faaiaaiYcaaaaacaGL7baacaaMe8UaaGjbVpaanaaabaGaaKyDaa aadaahaaWcbeqaaiaaiIcacaaIXaGaaGilaiabgUcaRiaaiYcacqGH RaWkcaaISaGaey4kaSIaaGykaaaakmaabmaabaGaamiDaaGaayjkai aawMcaaiaai2dadaGabaqaauaabaqaceaaaeaadaqadaqaaiaaicda caaIUaGaaG4naiaaisdacaaIZaGaaGilaiaaigdacaaIUaGaaGimai aaiwdacaaI1aaacaGLOaGaayzkaaGaaGilaiaaywW7caWG0bGaeyic I48aaKGeaeaacaaIWaGaaGilaiaaicdacaaIUaGaaGynaaGaay5wai aawMcaaiaaiYcaaeaadaqadaqaaiaaicdacaaIUaGaaGinaiaaiwda caaI3aGaaGilaiaaicdacaaIUaGaaGioaiaaiEdacaaIYaaacaGLOa GaayzkaaGaaGilaiaaywW7caWG0bGaeyicI48aamWaaeaacaaIWaGa aGOlaiaaiwdacaaISaGaaGymaaGaay5waiaaw2faaiaai6caaaaaca GL7baaaaa@A169@

Таким образом, мы заготовили “узловые” управления, выполнив алгоритм 1.

Далее, пусть в некоторый момент t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG0bWaaSbaaSqaaiaaicdaae qaaaaa@377E@  были сообщены следующие координаты целевой точки x (f) =(0.8,0.2,0.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaGccaaI9aGaaGikaiaaicdacaaIUaGaaGioaiaa iYcacaaIWaGaaGOlaiaaikdacaaISaGaaGimaiaai6cacaaI1aGaaG ykaaaa@4354@ . Для немедленного перевода состояния системы (1) в x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaqI4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaaaaa@391F@  выполним алгоритм 2.

1. Очевидно, целевую точку x (f) =(0.8,0.2,0.5) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWG4bWaaWbaaSqabeaacaaIOa GaamOzaiaaiMcaaaGccaaI9aGaaGikaiaaicdacaaIUaGaaGioaiaa iYcacaaIWaGaaGOlaiaaikdacaaISaGaaGimaiaai6cacaaI1aGaaG ykaaaa@434E@  содержит единственный имеющийся куб K 1 =[0.7,0.9]×[0.1,0.3]×[0.4,0.6] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaaigdaae qaaOGaaGypaiaaiUfacaaIWaGaaGOlaiaaiEdacaaISaGaaGjcVlaa icdacaaIUaGaaGyoaiaai2facqGHxdaTcaaIBbGaaGimaiaai6caca aIXaGaaGilaiaayIW7caaIWaGaaGOlaiaaiodacaaIDbGaey41aqRa aG4waiaaicdacaaIUaGaaGinaiaaiYcacaaMi8UaaGimaiaai6caca aI2aGaaGyxaaaa@55B4@ .

2. Представляем x (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaaieqacaWF4bWaaWbaaSqabeaaca aIOaGaamOzaiaaiMcaaaaaaa@391F@  в виде линейной комбинации

x (f) = 1 8 x f,1,,, + x f,1,,,+ + x f,1,,+, + x f,1,,+,+ + + x f,1,+,, + x f,1,+,,+ + x f,1,+,+, +x f,1,+,+,+ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaaiaajIhadaahaaWcbeqaai aaiIcacaWGMbGaaGykaaaakiaai2dadaWcaaqaaiaaigdaaeaacaaI 4aaaamaabeaabaGaaKiEamaaCaaaleqabaWaaeWaaeaacaWGMbGaaG ilaiaaigdacaaISaGaeyOeI0IaaGilaiabgkHiTiaaiYcacqGHsisl aiaawIcacaGLPaaaaaaakiaawIcaaiabgUcaRiaajIhadaahaaWcbe qaamaabmaabaGaamOzaiaaiYcacaaIXaGaaGilaiabgkHiTiaaiYca cqGHsislcaaISaGaey4kaScacaGLOaGaayzkaaaaaOGaey4kaSIaaG jbVlaajIhadaahaaWcbeqaamaabmaabaGaamOzaiaaiYcacaaIXaGa aGilaiabgkHiTiaaiYcacqGHRaWkcaaISaGaeyOeI0cacaGLOaGaay zkaaaaaOGaey4kaSIaaKiEamaaCaaaleqabaWaaeWaaeaacaWGMbGa aGilaiaaigdacaaISaGaeyOeI0IaaGilaiabgUcaRiaaiYcacqGHRa WkaiaawIcacaGLPaaaaaGccqGHRaWkaeaacqGHRaWkcaqI4bWaaWba aSqabeaadaqadaqaaiaadAgacaaISaGaaGymaiaaiYcacqGHRaWkca aISaGaeyOeI0IaaGilaiabgkHiTaGaayjkaiaawMcaaaaakiabgUca RiaajIhadaahaaWcbeqaamaabmaabaGaamOzaiaaiYcacaaIXaGaaG ilaiabgUcaRiaaiYcacqGHsislcaaISaGaey4kaScacaGLOaGaayzk aaaaaOGaey4kaSIaaKiEamaaCaaaleqabaWaaeWaaeaacaWGMbGaaG ilaiaaigdacaaISaGaey4kaSIaaGilaiabgUcaRiaaiYcacqGHsisl aiaawIcacaGLPaaaaaGccqGHRaWkcaqI4bWaaeGaaeaadaahaaWcbe qaamaabmaabaGaamOzaiaaiYcacaaIXaGaaGilaiabgUcaRiaaiYca cqGHRaWkcaaISaGaey4kaScacaGLOaGaayzkaaaaaaGccaGLPaaaca aIUaaaaaa@9624@

3. В качестве искомого разрешающего программного управления получаем

u ^ t = 1 8 u ¯ 1,,, t + u ¯ 1,,,+ t + u ¯ 1,,+, t + u ¯ 1,,+,+ t + + u ¯ 1,+,, t + u ¯ 1,+,,+ t + u ¯ 1,+,+, t + u ¯ 1,+,+,+ t = = (0.492,0.856),t[0,0.5), (0.511,0.822),t[0.5,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakqaaceqaamaaHaaabaGaaKyDaaGaay PadaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGypamaalaaabaGa aGymaaqaaiaaiIdaaaWaaeqaaeaadaqdaaqaaiaajwhaaaWaaWbaaS qabeaadaqadaqaaiaaigdacaaISaGaeyOeI0IaaGilaiabgkHiTiaa iYcacqGHsislaiaawIcacaGLPaaaaaGcdaqadaqaaiaadshaaiaawI cacaGLPaaacqGHRaWkaiaawIcaamaanaaabaGaaKyDaaaadaahaaWc beqaamaabmaabaGaaGymaiaaiYcacqGHsislcaaISaGaeyOeI0IaaG ilaiabgUcaRaGaayjkaiaawMcaaaaakmaabmaabaGaamiDaaGaayjk aiaawMcaaiabgUcaRmaanaaabaGaaKyDaaaadaahaaWcbeqaamaabm aabaGaaGymaiaaiYcacqGHsislcaaISaGaey4kaSIaaGilaiabgkHi TaGaayjkaiaawMcaaaaakmaabmaabaGaamiDaaGaayjkaiaawMcaai abgUcaRmaanaaabaGaaKyDaaaadaahaaWcbeqaamaabmaabaGaaGym aiaaiYcacqGHsislcaaISaGaey4kaSIaaGilaiabgUcaRaGaayjkai aawMcaaaaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRaqa aiabgUcaRmaanaaabaGaaKyDaaaadaahaaWcbeqaamaabmaabaGaaG ymaiaaiYcacqGHRaWkcaaISaGaeyOeI0IaaGilaiabgkHiTaGaayjk aiaawMcaaaaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRm aanaaabaGaaKyDaaaadaahaaWcbeqaamaabmaabaGaaGymaiaaiYca cqGHRaWkcaaISaGaeyOeI0IaaGilaiabgUcaRaGaayjkaiaawMcaaa aakmaabmaabaGaamiDaaGaayjkaiaawMcaaiabgUcaRmaanaaabaGa aKyDaaaadaahaaWcbeqaamaabmaabaGaaGymaiaaiYcacqGHRaWkca aISaGaey4kaSIaaGilaiabgkHiTaGaayjkaiaawMcaaaaakmaabmaa baGaamiDaaGaayjkaiaawMcaaiabgUcaRmaabiaabaWaa0aaaeaaca qI1baaamaaCaaaleqabaWaaeWaaeaacaaIXaGaaGilaiabgUcaRiaa iYcacqGHRaWkcaaISaGaey4kaScacaGLOaGaayzkaaaaaOWaaeWaae aacaWG0baacaGLOaGaayzkaaaacaGLPaaacaaI9aaabaGaaGypamaa ceaabaqbaeaabiqaaaqaaiaaiIcacaaIWaGaaGOlaiaaisdacaaI5a GaaGOmaiaaiYcacaaIWaGaaGOlaiaaiIdacaaI1aGaaGOnaiaaiMca caaISaGaaGzbVlaadshacqGHiiIZcaaIBbGaaGimaiaaiYcacaaIWa GaaGOlaiaaiwdacaaIPaGaaGilaaqaaiaaiIcacaaIWaGaaGOlaiaa iwdacaaIXaGaaGymaiaaiYcacaaIWaGaaGOlaiaaiIdacaaIYaGaaG OmaiaaiMcacaaISaGaaGzbVlaadshacqGHiiIZcaaIBbGaaGimaiaa i6cacaaI1aGaaGilaiaaigdacaaIDbGaaGOlaaaaaiaawUhaaaaaaa@C748@

Моделирование движения системы (1) под действием полученного управления u ^ (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqiaaqaaiaajwhaaiaawkWaai aaiIcacaWG0bGaaGykaaaa@39BF@  с помощью метода Рунге MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ Кутты с шагом по времени Δ t =0.001 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqqHuoardaWgaaWcbaGaamiDaa qabaGccaaI9aGaaGimaiaai6cacaaIWaGaaGimaiaaigdaaaa@3C9C@  показало, что состояние системы в момент времени ϑ=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacqaHrpGscaaI9aGaaGymaaaa@38C9@  перешло в точку x ^ (ϑ)= 0.804869,0,2016473,0.5014999 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaadaqiaaqaaiaajIhaaiaawkWaai aaiIcacqaHrpGscaaIPaGaaGypamaabmaabaGaaGimaiaai6cacaaI 4aGaaGimaiaaisdacaaI4aGaaGOnaiaaiMdacaaISaGaaGimaiaaiY cacaaIYaGaaGimaiaaigdacaaI2aGaaGinaiaaiEdacaaIZaGaaGil aiaaicdacaaIUaGaaGynaiaaicdacaaIXaGaaGinaiaaiMdacaaI5a GaaGyoaaGaayjkaiaawMcaaaaa@5168@ . Величина промаха (в евклидовой метрике) составила || x ^ (ϑ) x (f,1) ||=0.005355 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaaI8bGaaGiFamaaHaaabaGaaK iEaaGaayPadaGaaGikaiabeg9akjaaiMcacqGHsislcaWH4bWaaWba aSqabeaacaaIOaGaamOzaiaaiYcacaaIXaGaaGykaaaakiaaiYhaca aI8bGaaGypaiaaicdacaaIUaGaaGimaiaaicdacaaI1aGaaG4maiaa iwdacaaI1aaaaa@4B16@ , что составляет 2.68 % от длины ребра куба K 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhDYfgasaacH8Wr Fv0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFL0dir =xcvk9FHe9v8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqa ciaacaGaaeqabaqabeGadaaakeaacaWGlbWaaSbaaSqaaiaaigdaae qaaaaa@3756@ , являющимся ячейкой разбиения множества возможных целевых точек.

ЗАКЛЮЧЕНИЕ

Отметим, что исследуемая в настоящей работе задача была рассмотрена ранее в [12, п. 5]. В той работе было предложено путем замены фазовой переменной переводить неопределенность в целевой точке в неопределенность по параметру. Однако в общем случае ранее предложенный в [12, п. 5] алгоритм не годится, так как для выполнения введенного в [12, п. 2] условия E фактически необходимо совпадение размерностей управляющего вектора и фазового пространства. В настоящей работе построено “прямое” решение поставленной задачи без введения вспомогательного параметра, рассмотрен пример, в котором размерность управляющего вектора меньше размерности фазового пространства. Кроме того, способы проверки выполнения введенного в [12, п. 2] условия E пока еще не найдены. В настоящей же работе все условия на управляемую систему легко проверяемы, теоретическая оценка погрешности может быть явно вычислена.

Направлениями дальнейших исследований могут быть использование нелинейной интерполяции (см. [27], [28]) программного управления для еще большей точности, исследование возможности применения интерполяции программного управления и оценке его погрешности в задачах управления системами, описываемыми дифференциальными уравнениями дробного порядка (см. [29], [30]).

×

Авторлар туралы

A. Alekseev

Experimental Machine-Design Bureau “Novator”

Хат алмасуға жауапты Автор.
Email: sztern987@gmail.com
Ресей, Kosmonavtov Ave. 18, Yekaterinburg, 620091

A. Ershov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: ale10919@yandex.ru
Ресей, ul. Sofia Kovalevskaya, 16, Yekaterinburg, 620108; ul. Mira, 19, Yekaterinburg, 620002

Әдебиет тізімі

  1. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972. [E.B. Lee , L. Markus Foundations of Optimal Control Theory. New York: Wiley, 1967.]
  2. Красовский Н.Н. Игровые задачи о встрече движений. М.: Наука, 1970.
  3. Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Наука, 1974.
  4. Veliov V.M. Parametric and functional uncertainties in dynamic systems local and global relationship. In book: Computer Arithmetic and Enclosure Methods. Amsterdam: North–Holland, 1992.
  5. Куржанский А.Б. Управление и наблюдение в условиях неопределенности. М.: Наука, 1977.
  6. Ершов А.А., Ушаков В.Н. О сближении управляемой системы, содержащей неопределенный параметр // Матем. сб. 2017. Т. 208. № 9. С. 56. [ A.A. Ershov , V.N. Ushakov An approach problem for a control system with an unknown parameter // Sb. Math. 2017. V. 208, 9. P. 1312–1352.]
  7. Ushakov V.N., Ershov A.A., Ushakov A.V. An approach problem with an unknown parameter and inaccurately measured motion of the system // IFAC-PapersOnLine. 2018. V. 51. № 32. С. 234.
  8. Никольский М.С. Об одной задаче управления с неполностью известным начальным условием // Прикл. матем. и информ. 2015. Т. 51, С. 16–23. [M.S. Nikol’skii, “A Control Problem with a Partially Known Initial Condition”, Comput. Math. Model. 2017. V. 28. P. 12–17.]
  9. Лемак С.С. К вопросу о формировании позиционных стратегий дифференциальной игры в методе экстремального прицеливания Н.Н. Красовского // Вестн. Моск. ун-та. Сер. 1. Матем., мех. 2015. Т. 6. С. 61. [S.S. Lemak, “Formation of positional strategies for a differential game in Krasovskii’s method of extremal aiming”, Moscow Univ. Mech. Bull. 2015. V. 70. No. 6. P. 157–160.]
  10. Ушаков В.Н., Матвийчук А.Р., Паршиков Г.В. Метод построения разрешающего управления задачи о сближении, основанный на притягивании к множеству разрешимости // Тр. ИММ УрО РАН. 2013. Т. 19. № 2. С. 275. [V.N. Ushakov, A.R. Matviychuk, G.V. Parshikov, “A method for constructing a resolving control in an approach problem based on attraction to the solvability set”, Proc. Steklov Inst. Math. (Suppl.), V. 284, suppl. 1. 2014. P. 135–144.]
  11. Ершов А.А. Интерполяция программного управления по параметру в задаче о сближении // Пробл. матем. анализа. 2022. Т. 113. С. 17. [A.A. Ershov, “Linear parameter interpolation of a program control in the approach problem”, J. Math. Sci. 2022. V. 260. No 6. P. 725–737.]
  12. Ершов А.А. Билинейная интерполяция программного управления в задаче о сближении // Уфимск. матем. журн. 2023. Т. 15. № 3. С. 42.
  13. Nader M., Ali J. Approximation methods and spatial interpolation in distributed control systems // ACC’09: Proceed. of the 2009 Conf. on American Control Conf. 2009. P. 860. https://folk.ntnu.no/skoge/prost/proceedings/acc09/data/papers/1097.pdf
  14. https://patents.google.com/patent/US5197014A/en
  15. Kowalski K., Steeb W.-H. Nonlinear dynamical systems and Carleman linearization. Singapore: World Scientific, 1991. https://doi.org/10.1142/1347
  16. Antoulas A.C., Beattie C.A., Gugercin S. Interpolatory methods for model reduction. Philadelphia: PA, 2020. https://doi.org/10.1137/1.9781611976083
  17. Condon M., Ivanov R. Krylov subspaces from bilinear representations of nonlinear systems // Compel-Int. J. Comp. Math. Electr. Electron. Eng. 2007. V. 26. № 2. P. 399–406. https://doi.org/10.1108/03321640710727755
  18. Benner P., Gugercin S., Werner S.W.R. Structure-preserving interpolation of bilinear control systems // Adv. Comput. Math. 2021. V. 47. № 43. https://doi.org/10.1007/s10444-021-09863-w
  19. Брессан А., Пикколи Б. Введение в математическую теорию управления. М.-Ижевск: Ин-т компьют. исслед., 2015. [A. Bressan, B. Piccoli Introduction to the mathematical theory of control. New York: American Instit of Math. Sci., 2007.]
  20. Михлин С.Г. Курс математической физики. М.: Наука. 1968.
  21. Ушаков В.Н., Ершов А.А. K решению задач управления с фиксированным моментом окончания // Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки. 2016. Т. 26. № 4. С. 543. [V.N. Ushakov, A.A. Ershov, “On the solution of control problems with fixed terminal time” [in Russian], Vestn. Udmurt. Univ. Math. Mekh. Komp'yut. Nauki. 2016. V. 26. № 4. P. 543–564.]
  22. Новикова А.О. Построение множеств достижимости двумерных нелинейных управляемых систем пиксельным методом // Тр. “Прикладная математика и информатика”. 2015. Т. 50. С. 62.
  23. Авдюшев В.А. Численное моделирование орбит небесных тел. Томск: Изд-кий Дом Томского гос. ун-та, 2015.
  24. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1966. [B.P. Demidovich, I.A. Maron, Fundamentals of computational mathematics. Nauka, Moscow (1966)]
  25. Лизоркин П.И. Курс дифференциальных и интегральных уравнений с дополнительными главами анализа. М.: Наука. 1981.
  26. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Лаборатория Базовых Знаний, 2001.
  27. Липцер Р.Ш., Ширяев А.Н. Нелинейная интерполяция компонент диффузионных марковских процессов (прямые уравнения, эффективные формулы) // Теория вероятн. и ее примен. 1968. Т. 13. Вып. 4. С. 602. [R. Sh. Liptser and A. N. Shiryaev, Non-Linear Interpolation of Components of Markov Diffusion Processes (Direct Equations, Effective Formulas) // Theory of Probability and its Appl. 1968. V. 13. Iss. 4. P. 564–583. https://doi.org/10.1137/1113074]
  28. Tsuda T. Nonlinear interpolation of functions of very many variables // Numer. Math. 1975. V. 24. P. 395. https://doi.org/10.1007/BF01437408
  29. Гомоюнов М.И., Лукоянов Н.Ю. Построение решений задач управления линейными системами дробного порядка на основе аппроксимационных моделей // Тр. ИММ УрО РАН. 2020. Т. 26. № 1. С. 39. [M.I. Gomoyunov, N.Y. Lukoyanov, Construction of Solutions to Control Problems for Fractional-Order Linear Systems Based on Approximation Models. Proc. Steklov Inst. Math. 2021. V. 313 (Suppl 1). S73–S82. https://doi.org/10.1134/S0081543821030093]
  30. Плеханова М.В. Задачи стартового управления для эволюционных уравнений дробного порядка // Челяб. физ.-матем. журн. 2016. Т. 1. № 3. C. 15. [M. V. Plekhanova, “Start control problems for fractional order evolution equations”, Chelyab. Fiz.-Mat. Zh. 2016. V. 1. P. 15–36. https://www.mathnet.ru/eng/chfmj27]

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Sections of sets ,  and  by plane .

Жүктеу (106KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».