Localizing the initial condition for solutions of the Cauchy problem for the heat equation

Cover Page

Cite item

Full Text

Abstract

The Cauchy problem for the heat equation with zero right-hand side is considered. The initial function is assumed to belong to the space of tempered distributions. The problem of determining the support of the initial function from solution values at some fixed time T > 0 is studied. Necessary and sufficient conditions for the support to lie in a given convex compact set are obtained. These conditions are formulated in terms of the solution’s decay rate at infinity. A sharp constant in the exponential for the Landis–Oleinik conjecture on the nonexistence of fast decaying solutions.

Full Text

В слое D T = n ×(0,T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseadaWgaa WcbaGaamivaaqabaGccaaI9aWefv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaad6gaaaGccqGHxd aTcaaIOaGaaGimaiaaiYcacaWGubGaaGykaaaa@4CCB@ , 0<T< MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacaaI8a GaamivaiaaiYdacqGHEisPaaa@3D15@ , рассматривается задача Коши

u t Δu=0,0<tT,u | t=0 =ψ S n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhadaWgaa WcbaGaamiDaaqabaGccqGHsislcqqHuoarcaWG1bGaeyypa0JaaGim aiaaiYcacaaMe8UaaGjbVlaaicdacaaI8aGaamiDaiabgsMiJkaads facaaISaGaaGjbVlaaysW7caWG1bGaaGiFamaaBaaaleaacaWG0bGa aGypaiaaicdaaeqaaOGaaGjbVlabg2da9iabeI8a5jabgIGioprr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8NeXpLbauaa daqadaqaamrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacga Gae4xhHi1aaWbaaSqabeaacaWGUbaaaaGccaGLOaGaayzkaaGaaGil aaaa@708A@  (1)

где S ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8NeXpLbauaacaaIOaWe fv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIuda ahaaWcbeqaaiaad6gaaaGccaaIPaaaaa@513E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  пространство обобщенных функций медленного роста в n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbaaaaaa@445D@ . Начальное условие понимается как

lim t0+ u(,t),φ = ψ,φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaawafabeWcba GaamiDaiabgkziUkaaicdacqGHRaWkaeqakeaaciGGSbGaaiyAaiaa c2gaaaWaaeWaaeaacaWG1bGaaGikaiabgwSixlaaiYcacaWG0bGaaG ykaiaaiYcacqaHgpGAaiaawIcacaGLPaaacaaI9aWaaeWaaeaacqaH ipqEcaaISaGaeqOXdOgacaGLOaGaayzkaaaaaa@5140@

для всех φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA8aQbaa@3A42@  из класса Шварца S( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NeXpLaaGikamrr1ngB PrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHi1aaWbaaS qabeaacaWGUbaaaOGaaGykaaaa@5132@ . Решения предполагаются принадлежащими классу функций, допускающему не более чем полиномиальный рост при x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHsg IRcqGHEisPaaa@3CE0@  и t0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacqGHsg IRcaaIWaaaaa@3C25@ . В этом классе решение задачи Коши существует и единственно для любой начальной функции из S ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8NeXpLbauaacaaIOaWe fv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIuda ahaaWcbeqaaiaad6gaaaGccaaIPaaaaa@513E@ , см. ниже в разд. 2 теорему Мацузавы.

В работе изучается следующая обратная задача. По значениям температуры в момент времени T>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsfacaaI+a GaaGimaaaa@3AE0@  требуется определить, была ли температура в начальный момент времени отлична от нуля лишь на некотором ограниченном множестве. И если да, то что можно сказать о форме нагретой области? Эту задачу можно рассматривать как вопрос об определении мгновенного источника тепла, сосредоточенного на плоскости t=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacaaI9a GaaGimaaaa@3AFF@ . Постановки задач о нахождении источника для различных типов уравнений в ограниченных и неограниченных областях приведены в [1-3]. В частности, рассматриваемый в настоящей работе вопрос аналогичен обратной задаче для уравнения Лапласа о нахождении распределения притягивающих масс по их внешнему потенциалу, исследовавшейся многими авторами, см. [1, 2]. С той, однако, разницей, что в рассматриваемой нами постановке требуется найти только часть информации об источнике.

Для заданного выпуклого компакта K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4729@  мы устанавливаем необходимое и достаточное условие на значения решения u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@  задачи (1) в момент времени T>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsfacaaI+a GaaGimaaaa@3AE0@  для того, чтобы носитель начальной функции ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5baa@3A53@  лежал в K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ . Это условие заключается в достаточно быстром убывании решения u(x,T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWGubGaaGykaaaa@3D70@  при x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHsg IRcqGHEisPaaa@3CE0@ . Приведены две формы соответствующей оценки. В первой скорость убывания описывается с помощью функции расстояния до K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ , во второй – с помощью опорной функции множества K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ .

Е.М. Ландис и О.А. Олейник [4] для параболических уравнений второго порядка выдвинули гипотезу о несуществовании сверхбыстро убывающих решений. А именно, если u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  ограниченное решение однородного параболического уравнения в D ¯ T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadseagaqeam aaBaaaleaacaWGubaabeaaaaa@3A6B@  и существуют положительные постоянные C,ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeacaaISa GaeqyTdugaaa@3BAA@  такие, что u(x,T) C e x 2+ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadsfacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qaiaadwgadaahaaWcbeqaaiabgkHiTmaaemaabaGaam iEaaGaay5bSlaawIa7amaaCaaabeqaaiaaikdacqGHRaWkcqaH1oqz aaaaaaaa@4C99@ , то u0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacqGHHj IUcaaIWaaaaa@3C02@  в D ¯ T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadseagaqeam aaBaaaleaacaWGubaabeaaaaa@3A6B@ . При этом указывалось, что для справедливости гипотезы на коэффициенты уравнения должны быть наложены подходящие условия на бесконечности. Эта гипотеза усиливает свойство единственности решения задачи Коши для параболических уравнений с обратным направлением времени: если u(x,T)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWGubGaaGykaiaai2dacaaIWaaaaa@3EF1@ , то u0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacqGHHj IUcaaIWaaaaa@3C02@  в D ¯ T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadseagaqeam aaBaaaleaacaWGubaabeaaaaa@3A6B@ , см., например, [5] и цитированную там литературу.

Для уравнения теплопроводности гипотеза Ландиса MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ Олейник была доказана в [6], а для параболических уравнений с переменными коэффициентами в [7, 8]. Во всех этих статьях тривиальность решения была установлена при условии u(x,T) C k e k x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadsfacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qamaaBaaaleaacaWGRbaabeaakiaadwgadaahaaWcbe qaaiabgkHiTiaadUgadaabdaqaaiaadIhaaiaawEa7caGLiWoadaah aaqabeaacaaIYaaaaaaaaaa@4C26@  для всех k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacqGHLj YScaaIXaaaaa@3BF6@ . В настоящей работе из результатов о локализации начального условия мы получаем, что достаточным условием тривиальности ограниченного решения уравнения теплопроводности в слое D T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseadaWgaa WcbaGaamivaaqabaaaaa@3A53@  является выполнение неравенства u(x,T) C (1+ x ) N e x 2 /(4T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadsfacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qaiaaiIcacaaIXaGaey4kaSYaaqWaaeaacaWG4baaca GLhWUaayjcSdGaaGykamaaCaaaleqabaGaamOtaaaakiaadwgadaah aaWcbeqaaiabgkHiTmaaemaabaGaamiEaaGaay5bSlaawIa7amaaCa aabeqaaiaaikdaaaGaaG4laiaaiIcacaaI0aGaamivaiaaiMcaaaaa aa@55F0@ , причем постоянная в экспоненте является точной.

1. ВСПОМОГАТЕЛЬНЫЕ УТВЕРЖДЕНИЯ И ОЦЕНКИ

Для z n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jqi dnaaCaaaleqabaGaamOBaaaaaaa@46B6@  и t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacaaI+a GaaGimaaaa@3B00@  обозначим

Γ z,t = 4πt n/2 e z,z 4t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabfo5ahnaabm aabaGaamOEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaabmaa baGaaGinaiabec8aWjaadshaaiaawIcacaGLPaaadaahaaWcbeqaai abgkHiTiaad6gacaaIVaGaaGOmaaaakiaadwgadaahaaWcbeqaaiab gkHiTmaalaaabaWaaaWaaeaacaWG6bGaaGilaiaadQhaaiaawMYica GLQmcaaeaacaaI0aGaamiDaaaaaaGccaaIUaaaaa@5085@

Здесь и далее для z=( z 1 ,, z n ),w=( w 1 ,, w n ) n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacaaI9a GaaGikaiaadQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKa aGilaiaadQhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaGilaiaays W7caWG3bGaaGypaiaaiIcacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGa aGilaiablAciljaaiYcacaWG3bWaaSbaaSqaaiaad6gaaeqaaOGaaG ykaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac faGae8NaHm0aaWbaaSqabeaacaWGUbaaaaaa@5B93@  полагаем ,w= z 1 w 1 ++ z n w n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYcacaWG3b GaaGypaiaadQhadaWgaaWcbaGaaGymaaqabaGccaWG3bWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIaamOEamaaBaaale aacaWGUbaabeaakiaadEhadaWgaaWcbaGaamOBaaqabaaaaa@4604@ . При фиксированном t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacaaI+a GaaGimaaaa@3B00@  решение u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@  задачи Коши (1) , представимое в виде свертки фундаментального решения с начальной функцией ψ S ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5jabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8Ne XpLbauaacaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39 gaiyaacqGFDeIudaahaaWcbeqaaiaad6gaaaGccaaIPaaaaa@5490@ , может быть продолжено до целой функции u(z,t)=(Γ(z,t),ψ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamOEaiaaiYcacaWG0bGaaGykaiaai2dacaaIOaGaeu4KdCKaaGik aiaadQhacqGHsislcqGHflY1caaISaGaamiDaiaaiMcacaaISaGaeq iYdKNaaGykaaaa@4AF4@ . В этом разделе мы устанавливаем некоторые оценки функций комплексного переменного, которые нам понадобятся далее при исследовании решения u(z,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamOEaiaaiYcacaWG0bGaaGykaaaa@3D92@  и преобразования Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=rbiaaa@3797@ Лапласа от него.

Лемма 1. Справедливы оценки

z k Γ(z,t) C n,k z + t 1/2 |k| t |k|n/2 e Re z,z 4t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaey OaIy7aa0baaSqaaiaadQhaaeaacaWGRbaaaOGaeu4KdCKaaGikaiaa dQhacaaISaGaamiDaiaaiMcaaiaawEa7caGLiWoacqGHKjYOcaWGdb WaaSbaaSqaaiaad6gacaaISaGaam4AaaqabaGcdaqadaqaamaaemaa baGaamOEaaGaay5bSlaawIa7aiabgUcaRiaadshadaahaaWcbeqaai aaigdacaaIVaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGiFaiaadUgacaaI8baaaOGaamiDamaaCaaaleqabaGaeyOeI0IaaG iFaiaadUgacaaI8bGaeyOeI0IaamOBaiaai+cacaaIYaaaaOGaamyz amaaCaaaleqabaGaeyOeI0YaaSaaaeaaieaacaWFsbGaa8xzamaaam aabaGaamOEaiaaiYcacaWG6baacaGLPmIaayPkJaaabaGaaGinaiaa dshaaaaaaOGaaGilaaaa@6A58@

sup ξ n ξ N z k Γ zξ,t C k,n,N z + t 1/2 N+|k| t |k|n/2 e |Imz | 2 4t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaawafabeWcba GaeqOVdGNaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWFDeIudaahaaqabeaacaWGUbaaaaqabOqaaiGacohaca GG1bGaaiiCaaaadaabdaqaaiabe67a4naaCaaaleqabaGaamOtaaaa kiabgkGi2oaaDaaaleaacaWG6baabaGaam4Aaaaakiabfo5ahnaabm aabaGaamOEaiabgkHiTiabe67a4jaaiYcacaWG0baacaGLOaGaayzk aaaacaGLhWUaayjcSdGaeyizImQaam4qamaaBaaaleaacaWGRbGaaG ilaiaad6gacaaISaGaamOtaaqabaGcdaqadaqaamaaemaabaGaamOE aaGaay5bSlaawIa7aiabgUcaRiaadshadaahaaWcbeqaaiaaigdaca aIVaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamOtaiab gUcaRiaaiYhacaWGRbGaaGiFaaaakiaadshadaahaaWcbeqaaiabgk HiTiaaiYhacaWGRbGaaGiFaiabgkHiTiaad6gacaaIVaGaaGOmaaaa kiaadwgadaahaaWcbeqaamaalaaabaGaaGiFaGqaaiaa+LeacaGFTb GaaGPaVlaadQhacaaI8bWaaWbaaeqabaGaaGOmaaaaaeaacaaI0aGa amiDaaaaaaGccaaISaaaaa@85B5@

для всех z n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacqGHii IZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jqi dnaaCaaaleqabaGaamOBaaaaaaa@46B6@ , t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacaaI+a GaaGimaaaa@3B00@ , N0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6eacqGHLj YScaaIWaaaaa@3BD8@ . Здесь k=( k 1 ,, k n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUgacaaI9a GaaGikaiaadUgadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKa aGilaiaadUgadaWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@4229@ , k = k 1 ++ k n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam 4AaaGaay5bSlaawIa7aiaai2dacaWGRbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaeSOjGSKaey4kaSIaam4AamaaBaaaleaacaWGUbaabe aaaaa@4434@  и z k = z 1 k 1 z n k n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgkGi2oaaDa aaleaacaWG6baabaGaam4Aaaaakiaai2dacqGHciITdaqhaaWcbaGa amOEamaaBaaabaGaaGymaaqabaaabaGaam4AamaaBaaabaGaaGymaa qabaaaaOGaeSOjGSKaeyOaIy7aa0baaSqaaiaadQhadaWgaaqaaiaa d6gaaeqaaaqaaiaadUgadaWgaaqaaiaad6gaaeqaaaaaaaa@48E8@ , z = i=1 n z i 2 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam OEaaGaay5bSlaawIa7aiaai2dadaqadaqaamaaqadabeWcbaGaamyA aiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWaaqWaaeaacaWG6b WaaSbaaSqaaiaadMgaaeqaaaGccaGLhWUaayjcSdWaaWbaaSqabeaa caaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaaG4lai aaikdaaaaaaa@4CFB@ , Rez=(Re z 1 ,,Re z n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGqaaiaa=jfaca WFLbGaaGPaVlaadQhacaaI9aGaaGikaiaa=jfacaWFLbGaaGPaVlaa dQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiaa=j facaWFLbGaaGPaVlaadQhadaWgaaWcbaGaamOBaaqabaGccaaIPaaa aa@4C2B@ , Imz=(Im z 1 ,,Im z n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGqaaiaa=Leaca WFTbGaaGPaVlaadQhacaaI9aGaaGikaiaa=LeacaWFTbGaaGPaVlaa dQhadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiaa=L eacaWFTbGaaGPaVlaadQhadaWgaaWcbaGaamOBaaqabaGccaaIPaaa aa@4C28@ .

Доказательство. Из равенства

z k Γ z,t = 1 |k| 4πt n/2 2 t 1/2 |k| H k 1 z 1 2 t 1/2 H k n z n 2 t 1/2 e z,z 4t , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgkGi2oaaDa aaleaacaWG6baabaGaam4Aaaaakiabfo5ahnaabmaabaGaamOEaiaa iYcacaWG0baacaGLOaGaayzkaaGaaGypamaabmaabaGaeyOeI0IaaG ymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGiFaiaadUgacaaI8baa aOWaaeWaaeaacaaI0aGaeqiWdaNaamiDaaGaayjkaiaawMcaamaaCa aaleqabaGaeyOeI0IaamOBaiaai+cacaaIYaaaaOWaaeWaaeaacaaI YaGaamiDamaaCaaaleqabaGaaGymaiaai+cacaaIYaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacqGHsislcaaI8bGaam4AaiaaiYhaaaGc caWGibWaaSbaaSqaaiaadUgadaWgaaqaaiaaigdaaeqaaaqabaGcda qadaqaamaalaaabaGaamOEamaaBaaaleaacaaIXaaabeaaaOqaaiaa ikdacaWG0bWaaWbaaSqabeaacaaIXaGaaG4laiaaikdaaaaaaaGcca GLOaGaayzkaaGaeSOjGSKaamisamaaBaaaleaacaWGRbWaaSbaaeaa caWGUbaabeaaaeqaaOWaaeWaaeaadaWcaaqaaiaadQhadaWgaaWcba GaamOBaaqabaaakeaacaaIYaGaamiDamaaCaaaleqabaGaaGymaiaa i+cacaaIYaaaaaaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaai abgkHiTmaalaaabaWaaaWaaeaacaWG6bGaaGilaiaadQhaaiaawMYi caGLQmcaaeaacaaI0aGaamiDaaaaaaGccaaISaaaaa@7AB2@

где H m (x)=( 1) m e x 2 d m d x m e x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIeadaWgaa WcbaGaamyBaaqabaGccaaIOaGaamiEaiaaiMcacaaI9aGaaGikaiab gkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGTbaaaOGaamyzamaaCa aaleqabaGaamiEamaaCaaabeqaaiaaikdaaaaaaOWaaSaaaeaacaWG KbWaaWbaaSqabeaacaWGTbaaaaGcbaGaamizaiaadIhadaahaaWcbe qaaiaad2gaaaaaaOGaamyzamaaCaaaleqabaGaeyOeI0IaamiEamaa Caaabeqaaiaaikdaaaaaaaaa@4DE5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  полиномы Эрмита, получаем

z k Γ z,t C t |k|n/2 z 1 + t 1/2 k 1 z n + t 1/2 k n e Re z,z 4t C z + t 1/2 |k| t |k|n/2 e Re z,z 4t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aacqGHciITdaqhaaWcbaGaamOEaaqaaiaadUgaaaGccqqHtoWrdaqa daqaaiaadQhacaaISaGaamiDaaGaayjkaiaawMcaaaGaay5bSlaawI a7aiabgsMiJkaadoeacaWG0bWaaWbaaSqabeaacqGHsislcaaI8bGa am4AaiaaiYhacqGHsislcaWGUbGaaG4laiaaikdaaaGcdaqadaqaam aaemaabaGaamOEamaaBaaaleaacaaIXaaabeaaaOGaay5bSlaawIa7 aiabgUcaRiaadshadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaam4AamaaBaaabaGaaGymaaqa baaaaOGaeSOjGSKaaGjbVpaabmaabaWaaqWaaeaacaWG6bWaaSbaaS qaaiaad6gaaeqaaaGccaGLhWUaayjcSdGaey4kaSIaamiDamaaCaaa leqabaGaaGymaiaai+cacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaWGRbWaaSbaaeaacaWGUbaabeaaaaGccaWGLbWaaWbaaSqa beaacqGHsisldaWcaaqaaGqaaiaa=jfacaWFLbWaaaWaaeaacaWG6b GaaGilaiaadQhaaiaawMYicaGLQmcaaeaacaaI0aGaamiDaaaaaaGc cqGHKjYOaeaacqGHKjYOcaWGdbWaaeWaaeaadaabdaqaaiaadQhaai aawEa7caGLiWoacqGHRaWkcaWG0bWaaWbaaSqabeaacaaIXaGaaG4l aiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiYhacaWGRb GaaGiFaaaakiaadshadaahaaWcbeqaaiabgkHiTiaaiYhacaWGRbGa aGiFaiabgkHiTiaad6gacaaIVaGaaGOmaaaakiaadwgadaahaaWcbe qaaiabgkHiTmaalaaabaGaa8Nuaiaa=vgadaaadaqaaiaadQhacaaI SaGaamOEaaGaayzkJiaawQYiaaqaaiaaisdacaWG0baaaaaakiaai6 caaaaa@9B48@

Для z=x+iy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacaaI9a GaamiEaiabgUcaRiaadMgacaWG5baaaa@3E16@ , используя равенство sup ξ n ξ m e |ξ | 2 4t = C m,n t m/2 ,m0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaavababeWcba GaeqOVdGNaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWFDeIudaahaaqabeaacaWGUbaaaaqabOqaaiGacohaca GG1bGaaiiCaaaadaabdaqaaiabe67a4bGaay5bSlaawIa7amaaCaaa leqabaGaamyBaaaakiaadwgadaahaaWcbeqaaiabgkHiTmaalaaaba GaaGiFaiabe67a4jaaiYhadaahaaqabeaacaaIYaaaaaqaaiaaisda caWG0baaaaaakiaai2dacaWGdbWaaSbaaSqaaiaad2gacaaISaGaam OBaaqabaGccaWG0bWaaWbaaSqabeaacaWGTbGaaG4laiaaikdaaaGc caaISaGaaGjbVlaad2gacqGHLjYScaaIWaGaaGilaaaa@67B4@  заключаем, что

sup ξ n ξ N z k Γ zξ,t = sup ξ n xξ N x k Γ ξ+iy,t C sup ξ n x N + ξ N t |k|n/2 z + t 1/2 |k| e |y | 2 |ξ | 2 4t C z + t 1/2 N+|k| t |k|n/2 e |y | 2 4t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaybuae qaleaacqaH+oaEcqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy 0HgiuD3BaGqbaiab=1risnaaCaaabeqaaiaad6gaaaaabeGcbaGaci 4CaiaacwhacaGGWbaaamaaemaabaGaeqOVdGhacaGLhWUaayjcSdWa aWbaaSqabeaacaWGobaaaOWaaqWaaeaacqGHciITdaqhaaWcbaGaam OEaaqaaiaadUgaaaGccqqHtoWrdaqadaqaaiaadQhacqGHsislcqaH +oaEcaaISaGaamiDaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiaai2 dadaGfqbqabSqaaiabe67a4jabgIGiolab=1risnaaCaaabeqaaiaa d6gaaaaabeGcbaGaci4CaiaacwhacaGGWbaaamaaemaabaGaamiEai abgkHiTiabe67a4bGaay5bSlaawIa7amaaCaaaleqabaGaamOtaaaa kmaaemaabaGaeyOaIy7aa0baaSqaaiaadIhaaeaacaWGRbaaaOGaeu 4KdC0aaeWaaeaacqaH+oaEcqGHRaWkcaWGPbGaamyEaiaaiYcacaWG 0baacaGLOaGaayzkaaaacaGLhWUaayjcSdGaeyizImkabaGaeyizIm Qaam4qamaawafabeWcbaGaeqOVdGNaeyicI4Sae8xhHi1aaWbaaeqa baGaamOBaaaaaeqakeaaciGGZbGaaiyDaiaacchaaaWaaeWaaeaada abdaqaaiaadIhaaiaawEa7caGLiWoadaahaaWcbeqaaiaad6eaaaGc cqGHRaWkdaabdaqaaiabe67a4bGaay5bSlaawIa7amaaCaaaleqaba GaamOtaaaaaOGaayjkaiaawMcaaiaadshadaahaaWcbeqaaiabgkHi TiaaiYhacaWGRbGaaGiFaiabgkHiTiaad6gacaaIVaGaaGOmaaaakm aabmaabaWaaqWaaeaacaWG6baacaGLhWUaayjcSdGaey4kaSIaamiD amaaCaaaleqabaGaaGymaiaai+cacaaIYaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaI8bGaam4AaiaaiYhaaaGccaWGLbWaaWbaaSqa beaadaWcaaqaaiaaiYhacaWG5bGaaGiFamaaCaaabeqaaiaaikdaaa GaeyOeI0IaaGiFaiabe67a4jaaiYhadaahaaqabeaacaaIYaaaaaqa aiaaisdacaWG0baaaaaakiabgsMiJcqaaiabgsMiJkaadoeadaqada qaamaaemaabaGaamOEaaGaay5bSlaawIa7aiabgUcaRiaadshadaah aaWcbeqaaiaaigdacaaIVaGaaGOmaaaaaOGaayjkaiaawMcaamaaCa aaleqabaGaamOtaiabgUcaRiaaiYhacaWGRbGaaGiFaaaakiaadsha daahaaWcbeqaaiabgkHiTiaaiYhacaWGRbGaaGiFaiabgkHiTiaad6 gacaaIVaGaaGOmaaaakiaadwgadaahaaWcbeqaamaalaaabaGaaGiF aiaadMhacaaI8bWaaWbaaeqabaGaaGOmaaaaaeaacaaI0aGaamiDaa aaaaGccaaIUaaaaaa@E0D3@

Лемма доказана.

Лемма 2. Пусть функция f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgaaaa@3970@  одного комплексного переменного является аналитической в угле A={0<argz<π/2} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeacaaI9a GaaG4EaiaaicdacaaI8aGaciyyaiaackhacaGGNbGaamOEaiaaiYda cqaHapaCcaaIVaGaaGOmaiaai2haaaa@455D@  и непрерывна в A ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadgeagaqeaa aa@3963@ . Если для некоторых постоянных M,C,a>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad2eacaaISa Gaam4qaiaaiYcacaWGHbGaaGOpaiaaicdaaaa@3DF3@  справедливы оценки

f(z) C e aR e 2 z ,zA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam OzaiaaiIcacaWG6bGaaGykaaGaay5bSlaawIa7aiabgsMiJkaadoea caWGLbWaaWbaaSqabeaacaWGHbacbaGaa8Nuaiaa=vgadaahaaqabe aacaaIYaaaaiaadQhaaaGccaaISaGaaGzbVlaadQhacqGHiiIZcaWG bbGaaGilaaaa@4D5C@  (2)

f(z) M,zA, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam OzaiaaiIcacaWG6bGaaGykaaGaay5bSlaawIa7aiabgsMiJkaad2ea caaISaGaaGzbVlaadQhacqGHiiIZcqGHciITcaWGbbGaaGilaaaa@4926@  (3)

то

f(z) M,z A ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam OzaiaaiIcacaWG6bGaaGykaaGaay5bSlaawIa7aiabgsMiJkaad2ea caaISaGaaGzbVlaadQhacqGHiiIZceWGbbGbaebacaaIUaaaaa@47DA@  (4)

Доказательство. Для малого α>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjaai6 dacaaIWaaaaa@3BA6@  в угле A α ={0<argz<π/2α} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeadaWgaa WcbaGaeqySdegabeaakiaai2dacaaI7bGaaGimaiaaiYdaciGGHbGa aiOCaiaacEgacaWG6bGaaGipaiabec8aWjaai+cacaaIYaGaeyOeI0 IaeqySdeMaaGyFaaaa@49BE@  рассмотрим функцию g(z)=f(z) e iab z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEgacaaIOa GaamOEaiaaiMcacaaI9aGaamOzaiaaiIcacaWG6bGaaGykaiaadwga daahaaWcbeqaaiaadMgacaWGHbGaamOyaiaadQhadaahaaqabeaaca aIYaaaaaaaaaa@459A@ , где b= 1 2 tgα MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkgacaaI9a WaaSaaaeaacaaIXaaabaGaaGOmaaaacaqG0bGaae4zaiabeg7aHbaa @3F3A@ . Для z=x+iy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacaaI9a GaamiEaiabgUcaRiaadMgacaWG5baaaa@3E16@  

g(z) = f(z) e 2abxy , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam 4zaiaaiIcacaWG6bGaaGykaaGaay5bSlaawIa7aiaai2dadaabdaqa aiaadAgacaaIOaGaamOEaiaaiMcaaiaawEa7caGLiWoacaWGLbWaaW baaSqabeaacqGHsislcaaIYaGaamyyaiaadkgacaWG4bGaamyEaaaa kiaaiYcaaaa@4D77@

откуда имеем

gzfzCeaz2 в Aα.

На верхней стороне угла A α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeadaWgaa WcbaGaeqySdegabeaaaaa@3B16@  имеем

g r e i(π/2α) f r e i(π/2α) e ab r 2 sin2α C e a r 2 ( sin 2 αbsin2α) =C. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam 4zamaaeiaabaWaaeWaaeaacaWGYbGaamyzamaaCaaaleqabaGaamyA aiaaiIcacqaHapaCcaaIVaGaaGOmaiabgkHiTiabeg7aHjaaiMcaaa aakiaawIcacaGLPaaaaiaawIa7aiabgsMiJoaaeeaabaGaamOzamaa bmaabaGaamOCaiaadwgadaahaaWcbeqaaiaadMgacaaIOaGaeqiWda NaaG4laiaaikdacqGHsislcqaHXoqycaaIPaaaaaGccaGLOaGaayzk aaaacaGLhWoaaiaawEa7caGLiWoacaWGLbWaaWbaaSqabeaacqGHsi slcaWGHbGaamOyaiaadkhadaahaaqabeaacaaIYaaaaiGacohacaGG PbGaaiOBaiaaikdacqaHXoqyaaGccqGHKjYOcaWGdbGaamyzamaaCa aaleqabaGaamyyaiaadkhadaahaaqabeaacaaIYaaaaiaaiIcadaqf GaqabeqabaGaaGOmaaqaaiGacohacaGGPbGaaiOBaaaacqaHXoqycq GHsislcaWGIbGaci4CaiaacMgacaGGUbGaaGOmaiabeg7aHjaaiMca aaGccaaI9aGaam4qaiaai6caaaa@7B21@

По теореме Фрагмена–Линделефа [9, гл. 8, § 6] получим

g(z) = f(z) e axytgα max{C,M},z A ¯ α . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam 4zaiaaiIcacaWG6bGaaGykaaGaay5bSlaawIa7aiaai2dadaabdaqa aiaadAgacaaIOaGaamOEaiaaiMcaaiaawEa7caGLiWoacaWGLbWaaW baaSqabeaacqGHsislcaWGHbGaamiEaiaadMhaieaacaWF0bGaa83z aiabeg7aHbaakiabgsMiJkGac2gacaGGHbGaaiiEaiaaiUhacaWGdb GaaGilaiaad2eacaaI9bGaaGilaiaaywW7caWG6bGaeyicI4Sabmyq ayaaraWaaSbaaSqaaiabeg7aHbqabaGccaaIUaaaaa@5FBA@

Зафиксировав zA MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacqGHii IZcaWGbbaaaa@3BCE@  и переходя к пределу α0+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeg7aHjabgk ziUkaaicdacqGHRaWkaaa@3DAD@  заключаем, что |f(z)|max{C,M} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWGMb GaaGikaiaadQhacaaIPaGaaGiFaiabgsMiJkGac2gacaGGHbGaaiiE aiaaiUhacaWGdbGaaGilaiaad2eacaaI9baaaa@46C5@  в A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeaaaa@394B@ . Применяя теорему Фрагмена–Линделефа еще раз, получим (4) .

Лемма доказана.

Для множества K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4729@  обозначим через d K (x)=dist(x,K) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacaaI9aacbaGaa8hz aiaa=LgacaWFZbGaa8hDaiaaiIcacaWG4bGaaGilaiaadUeacaaIPa aaaa@4546@  функцию расстояния до K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ .

Теорема 1. Пусть целая функция n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gaaaa@3978@  комплексных переменных f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgaaaa@3970@  для некоторого непустого выпуклого компакта K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4729@  и постоянных N0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6eacqGHLj YScaaIWaaaaa@3BD8@ , C,a>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeacaaISa GaaGjbVlaaysW7caWGHbGaaGOpaiaaicdaaaa@3F85@ , удовлетворяет оценкам

f(x) C 1+ x N e a d K 2 (x) ,x n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam OzaiaaiIcacaWG4bGaaGykaaGaay5bSlaawIa7aiabgsMiJkaadoea daqadaqaaiaaigdacqGHRaWkdaabdaqaaiaadIhaaiaawEa7caGLiW oaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6eaaaGccaWGLbWaaWba aSqabeaacqGHsislcaWGHbGaamizamaaDaaabaGaam4saaqaaiaaik daaaGaaGikaiaadIhacaaIPaaaaOGaaGilaiaaywW7caWG4bGaeyic I48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDe IudaahaaWcbeqaaiaad6gaaaGccaaISaaaaa@630A@  (5)

f z C 1+ z N e a|Imz | 2 ,z n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam OzamaabmaabaGaamOEaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiab gsMiJkaadoeadaqadaqaaiaaigdacqGHRaWkdaabdaqaaiaadQhaai aawEa7caGLiWoaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6eaaaGc caWGLbWaaWbaaSqabeaacaWGHbGaaGiFaGqaaiaa=LeacaWFTbGaaG PaVlaa=PhacaaI8bWaaWbaaeqabaGaaGOmaaaaaaGccaaISaGaaGzb VlaadQhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD 3BaGqbaiab+jqidnaaCaaaleqabaGaamOBaaaakiaai6caaaa@6456@  (6)

Тогда

f z C 1 1+ z 2N e a(|Imz | 2 d K 2 (Rez)) ,z n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam OzamaabmaabaGaamOEaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiab gsMiJkaadoeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaigdacq GHRaWkdaabdaqaaiaadQhaaiaawEa7caGLiWoaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdacaWGobaaaOGaamyzamaaCaaaleqabaGaam yyaiaaiIcacaaI8bacbaGaa8xsaiaa=1gacaaMc8Uaa8NEaiaaiYha daahaaqabeaacaaIYaaaaiabgkHiTiaadsgadaqhaaqaaiaadUeaae aacaaIYaaaaiaaiIcacaWFsbGaa8xzaiaaykW7caWF6bGaaGykaiaa iMcaaaGccaaISaGaaGzbVlaadQhacqGHiiIZtuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGqbaiab+jqidnaaCaaaleqabaGaamOB aaaakiaaiYcaaaa@708E@  (7)

где C 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeadaWgaa WcbaGaaGymaaqabaaaaa@3A34@  зависит от C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeaaaa@394D@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6gaaaa@3978@ , N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6eaaaa@3958@  и компакта K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ .

Доказательство. Если xK MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHii IZcaWGlbaaaa@3BD6@ , то (7) для точки z=x+iy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacaaI9a GaamiEaiabgUcaRiaadMgacaWG5baaaa@3E16@  вытекает из (6). Пусть x K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacuGHii IZgaGfaiaadUeaaaa@3BF3@  и O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eaaaa@3959@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  ближайшая к x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhaaaa@3982@  точка K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ .

Обозначим через γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeo7aNbaa@3A2C@  гиперплоскость в n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbaaaaaa@445D@ , проходящую через O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eaaaa@3959@  и ортогональную отрезку Ox MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eacaWG4b aaaa@3A56@ . Выберем декартову систему координат ( x ˜ 1 ,, x ˜ n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcaceWG4b GbaGaadaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiqa dIhagaacamaaBaaaleaacaWGUbaabeaakiaaiMcaaaa@40AA@  с центром в точке O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eaaaa@3959@  такую, что точка x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhaaaa@3982@  лежит на луче O x ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eaceWG4b GbaGaadaWgaaWcbaGaamOBaaqabaaaaa@3B84@ . В ней точка x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhaaaa@3982@  имеет координаты x ˜ =(0,,0, x ˜ n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadIhagaacai aai2dacaaIOaGaaGimaiaaiYcacqWIMaYscaaISaGaaGimaiaaiYca ceWG4bGbaGaadaWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@42AA@ , где x ˜ n = d K (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadIhagaacam aaBaaaleaacaWGUbaabeaakiaai2dacaWGKbWaaSbaaSqaaiaadUea aeqaaOGaaGikaiaadIhacaaIPaaaaa@3FD2@ .

Плоскость γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeo7aNbaa@3A2C@  является опорной для K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ . В самом деле, если бы существовала точка PK MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadcfacqGHii IZcaWGlbaaaa@3BAE@ , принадлежащая полупространству x ˜ n >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadIhagaacam aaBaaaleaacaWGUbaabeaakiaai6dacaaIWaaaaa@3C3C@ , то, в силу выпуклости K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ , весь отрезок OP MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eacaWGqb aaaa@3A2E@  принадлежал бы K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ . Это противоречит предположению, что точка O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eaaaa@3959@  является ближайшей к x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhaaaa@3982@  точкой K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ . Следовательно, обозначая функцию расстояния до K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@  в новых координатах той же буквой, для всех точек s ˜ =(0,,0, s ˜ n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadohagaacai aai2dacaaIOaGaaGimaiaaiYcacqWIMaYscaaISaGaaGimaiaaiYca ceWGZbGbaGaadaWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@42A0@  на положительном луче O x ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad+eaceWG4b GbaGaadaWgaaWcbaGaamOBaaqabaaaaa@3B84@ , имеем d K ( s ˜ )= s ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGabm4CayaaiaGaaGykaiaai2daceWG ZbGbaGaadaWgaaWcbaGaamOBaaqabaaaaa@3FCD@ .

В n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NaHm0aaWbaaSqabeaa caWGUbaaaaaa@4433@  выберем координаты

z ˜ j = x ˜ j +i y j ,j=1,,n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadQhagaacam aaBaaaleaacaWGQbaabeaakiaai2daceWG4bGbaGaadaWgaaWcbaGa amOAaaqabaGccqGHRaWkcaWGPbGaamyEamaaBaaaleaacaWGQbaabe aakiaaiYcacaaMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaa iYcacaWGUbGaaGOlaaaa@4A91@

Положим z ˜ =( z ˜ 1 ,, z ˜ n1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadQhagaacga qbaiaai2dacaaIOaGabmOEayaaiaWaaSbaaSqaaiaaigdaaeqaaOGa aGilaiablAciljaaiYcaceWG6bGbaGaadaWgaaWcbaGaamOBaiabgk HiTiaaigdaaeqaaOGaaGykaaaa@4436@  и обозначим через f ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadAgagaacam aaBaaaleaacaWGUbaabeaaaaa@3A9E@  ограничение f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadAgaaaa@3970@  на плоскость z ˜ 1 =i y 1 ,, z ˜ n1 =i y n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadQhagaacam aaBaaaleaacaaIXaaabeaakiaai2dacaWGPbGaamyEamaaBaaaleaa caaIXaaabeaakiaaiYcacqWIMaYscaaISaGabmOEayaaiaWaaSbaaS qaaiaad6gacqGHsislcaaIXaaabeaakiaai2dacaWGPbGaamyEamaa BaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaa@4A0F@ . Так как точка x K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacuGHii IZgaGfaiaadUeaaaa@3BF3@  выбирается произвольно, достаточно доказать (7) для f ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadAgagaacam aaBaaaleaacaWGUbaabeaaaaa@3A9E@  в полуплоскости Re z ˜ n 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGqaaiaa=jfaca WFLbGaaGPaVlqadQhagaacamaaBaaaleaacaWGUbaabeaakiabgwMi Zkaaicdaaaa@4089@  при любых значениях y 1 ,, y n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhadaWgaa WcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiaadMhadaWgaaWc baGaamOBaiabgkHiTiaaigdaaeqaaOGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@4D0D@ . Если K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@  лежит в открытом шаре B R (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkeadaWgaa WcbaGaamOuaaqabaGccaaIOaGaaGimaiaaiMcaaaa@3C78@  радиуса R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkfaaaa@395C@  с центром в нуле, то для точки z=x+iy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadQhacaaI9a GaamiEaiabgUcaRiaadMgacaWG5baaaa@3E16@  ее координаты z ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadQhagaacaa aa@3993@  удовлетворяют неравенствам

C 1 1+ z ˜ N 1+ z N C 2 1+ z ˜ N , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaaigdacqGHRaWkdaabdaqaaiqa dQhagaacaaGaay5bSlaawIa7aaGaayjkaiaawMcaamaaCaaaleqaba GaamOtaaaakiabgsMiJoaabmaabaGaaGymaiabgUcaRmaaemaabaGa amOEaaGaay5bSlaawIa7aaGaayjkaiaawMcaamaaCaaaleqabaGaam OtaaaakiabgsMiJkaadoeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqa aiaaigdacqGHRaWkdaabdaqaaiqadQhagaacaaGaay5bSlaawIa7aa GaayjkaiaawMcaamaaCaaaleqabaGaamOtaaaakiaaiYcaaaa@5929@

где C i = C i (n,N,R) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeadaWgaa WcbaGaamyAaaqabaGccaaI9aGaam4qamaaBaaaleaacaWGPbaabeaa kiaaiIcacaWGUbGaaGilaiaad6eacaaISaGaamOuaiaaiMcaaaa@4292@  и, по условию,

f ˜ n z ˜ n C 1+ z ˜ n N 1+ z ˜ N e a j=1 n y j 2 , z ˜ n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGabm OzayaaiaWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaaceWG6bGbaGaa daWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaiaawEa7caGLiW oacqGHKjYOcaWGdbWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaaceWG 6bGbaGaadaWgaaWcbaGaamOBaaqabaaakiaawEa7caGLiWoaaiaawI cacaGLPaaadaahaaWcbeqaaiaad6eaaaGcdaqadaqaaiaaigdacqGH RaWkdaabdaqaaiqadQhagaacgaqbaaGaay5bSlaawIa7aaGaayjkai aawMcaamaaCaaaleqabaGaamOtaaaakiaadwgadaahaaWcbeqaaiaa dggadaaeWaqaaiaadMhadaqhaaadbaGaamOAaaqaaiaaikdaaaaaba GaamOAaiabg2da9iaaigdaaeaacaWGUbaaoiabggHiLdaaaOGaaGil aiaaywW7ceWG6bGbaGaadaWgaaWcbaGaamOBaaqabaGccqGHiiIZtu uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jqidjaa iYcaaaa@71B7@

f ˜ n x ˜ n C 1+ x ˜ n N e a x ˜ n 2 , x ˜ n 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGabm OzayaaiaWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaaceWG4bGbaGaa daWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaiaawEa7caGLiW oacqGHKjYOcaWGdbWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaaceWG 4bGbaGaadaWgaaWcbaGaamOBaaqabaaakiaawEa7caGLiWoaaiaawI cacaGLPaaadaahaaWcbeqaaiaad6eaaaGccaWGLbWaaWbaaSqabeaa cqGHsislcaWGHbGabmiEayaaiaWaa0baaeaacaWGUbaabaGaaGOmaa aaaaGccaaISaGaaGzbVlqadIhagaacamaaBaaaleaacaWGUbaabeaa kiabgwMiZkaaicdacaaIUaaaaa@5B0E@

Функция g( z ˜ n )=(1+ z ˜ n ) N f ˜ ( z ˜ n ) e a z ˜ n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadEgacaaIOa GabmOEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaai2dacaaI OaGaaGymaiabgUcaRiqadQhagaacamaaBaaaleaacaWGUbaabeaaki aaiMcadaahaaWcbeqaaiabgkHiTiaad6eaaaGcceWGMbGbaGaacaaI OaGabmOEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaadwgada ahaaWcbeqaaiaadggaceWG6bGbaGaadaqhaaqaaiaad6gaaeaacaaI Yaaaaaaaaaa@4E76@  удовлетворяет в угле A 1 ={0<arg z ˜ n <π/2} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeadaWgaa WcbaGaaGymaaqabaGccaaI9aGaaG4EaiaaicdacaaI8aGaciyyaiaa ckhacaGGNbGabmOEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaGipai abec8aWjaai+cacaaIYaGaaGyFaaaa@4786@  условию леммы 2 с постоянной

M=C 1+ z ˜ N e a j=1 n y j 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad2eacaaI9a Gaam4qamaabmaabaGaaGymaiabgUcaRmaaemaabaGabmOEayaaiyaa faaacaGLhWUaayjcSdaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGob aaaOGaamyzamaaCaaaleqabaGaamyyamaaqadabaGaamyEamaaDaaa meaacaWGQbaabaGaaGOmaaaaaeaacaWGQbGaeyypa0JaaGymaaqaai aad6gaa4GaeyyeIuoaaaGccaaISaaaaa@4E80@

что проверяется с использованием неравенства 1+ z ˜ n 2 1+ z ˜ n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaigdacqGHRa WkdaabdaqaaiqadQhagaacamaaBaaaleaacaWGUbaabeaaaOGaay5b SlaawIa7aiabgsMiJkaaikdadaabdaqaaiaaigdacqGHRaWkceWG6b GbaGaadaWgaaWcbaGaamOBaaqabaaakiaawEa7caGLiWoacaaISaaa aa@4998@  справедливого при Re z ˜ n 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGqaaiaa=jfaca WFLbGaaGPaVlqadQhagaacamaaBaaaleaacaWGUbaabeaakiabgwMi Zkaaicdaaaa@4089@ . Следовательно,

f ˜ n x ˜ n +i y n C 1+ z ˜ N 1+ z ˜ n N e a j=1 n y j 2 e a z ˜ n 2 C 1+ z 2N e a j=1 n y j 2 a( x ˜ n 2 y n 2 ) =C 1+ z 2N e a|y | 2 a d K 2 (x) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aaceWGMbGbaGaadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiqadIha gaacamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadMgacaWG5bWaaS baaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaacaGLhWUaayjcSdGa eyizImQaam4qamaabmaabaGaaGymaiabgUcaRmaaemaabaGabmOEay aaiyaafaaacaGLhWUaayjcSdaacaGLOaGaayzkaaWaaWbaaSqabeaa caWGobaaaOWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaaceWG6bGbaG aadaWgaaWcbaGaamOBaaqabaaakiaawEa7caGLiWoaaiaawIcacaGL PaaadaahaaWcbeqaaiaad6eaaaGccaWGLbWaaWbaaSqabeaacaWGHb WaaabmaeaacaWG5bWaa0baaWqaaiaadQgaaeaacaaIYaaaaaqaaiaa dQgacqGH9aqpcaaIXaaabaGaamOBaaGdcqGHris5aaaakmaaemaaba GaamyzamaaCaaaleqabaGaeyOeI0IaamyyaiqadQhagaacamaaDaaa baGaamOBaaqaaiaaikdaaaaaaaGccaGLhWUaayjcSdGaeyizImkaba GaeyizImQaam4qamaabmaabaGaaGymaiabgUcaRmaaemaabaGaamOE aaGaay5bSlaawIa7aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmai aad6eaaaGccaWGLbWaaWbaaSqabeaacaWGHbWaaabmaeaacaWG5bWa a0baaWqaaiaadQgaaeaacaaIYaaaaaqaaiaadQgacqGH9aqpcaaIXa aabaGaamOBaaGdcqGHris5aSGaeyOeI0IaamyyaiaaiIcaceWG4bGb aGaadaqhaaqaaiaad6gaaeaacaaIYaaaaiabgkHiTiaadMhadaqhaa qaaiaad6gaaeaacaaIYaaaaiaaiMcaaaGccaaI9aGaam4qamaabmaa baGaaGymaiabgUcaRmaaemaabaGaamOEaaGaay5bSlaawIa7aaGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaiaad6eaaaGccaWGLbWaaWba aSqabeaacaWGHbGaaGiFaiaadMhacaaI8bWaaWbaaeqabaGaaGOmaa aacqGHsislcaWGHbGaamizamaaDaaabaGaam4saaqaaiaaikdaaaGa aGikaiaadIhacaaIPaaaaOGaaGOlaaaaaa@A709@

Случай угла A 2 ={π/2<arg z ˜ n <0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadgeadaWgaa WcbaGaaGOmaaqabaGccaaI9aGaaG4EaiabgkHiTiabec8aWjaai+ca caaIYaGaaGipaiGacggacaGGYbGaai4zaiqadQhagaacamaaBaaale aacaWGUbaabeaakiaaiYdacaaIWaGaaGyFaaaa@4874@  рассматривается аналогично.

Теорема доказана.

2. ЛОКАЛИЗАЦИЯ НАЧАЛЬНОГО РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ

В работах [10-12] Т. Мацузава охарактеризовал некоторые классы обобщенных функций и гиперфункций в терминах возможного роста решений задачи Коши для уравнения теплопроводности с начальной функцией из данного класса. Этот подход, получивший название метода теплового ядра, использовался затем многими авторами для описания различных пространств обобщенных функций, см. [13] и цитированную там литературу. Мы будем использовать следующую характеризацию функций из пространства S ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8NeXpLbauaacaaIOaWe fv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIuda ahaaWcbeqaaiaad6gaaaGccaaIPaaaaa@513E@  [14].

Теорема (Мацузава). Пусть ψ S n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5jabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8Ne XpLbauaadaqadaqaamrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq 1DVbacgaGae4xhHi1aaWbaaSqabeaacaWGUbaaaaGccaGLOaGaayzk aaaaaa@54B4@  и u(x,t)= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaai2daaaa@3E57@   (Γ(x,t),ψ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacqqHto WrcaaIOaGaamiEaiabgkHiTiabgwSixlaaiYcacaWG0bGaaGykaiaa iYcacqaHipqEcaaIPaaaaa@451E@ . Тогда функция u(x,t) C n ×(0,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolaadoeadaahaaWcbeqa aiabg6HiLcaakmaabmaabaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaad6gaaaGccqGHxdaT caaIOaGaaGimaiaaiYcacqGHEisPcaaIPaaacaGLOaGaayzkaaaaaa@554C@  и удовлетворяет следующим условиям:

  1. t Δ u(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaey OaIy7aaSbaaSqaaiaadshaaeqaaOGaeyOeI0IaeyiLdqeacaGLOaGa ayzkaaGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypai aaicdaaaa@4583@  при t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacaaI+a GaaGimaaaa@3B00@ ;
  2. u(,t)ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaeyyXICTaaGilaiaadshacaaIPaGaeyOKH4QaeqiYdKhaaa@4298@  в S n ,t0+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8NeXpLbauaadaqadaqa amrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHi 1aaWbaaSqabeaacaWGUbaaaaGccaGLOaGaayzkaaGaaGilaiaaysW7 caaMe8UaamiDaiabgkziUkaaicdacqGHRaWkaaa@59B4@ ;
  3. существуют положительные константы L,N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadYeacaaISa GaaGjbVlaaysW7caWGobaaaa@3DF9@  и C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeaaaa@394D@  такие, что

u(x,t) C t L 1+ x N ,(x,t) D 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qaiaadshadaahaaWcbeqaaiabgkHiTiaadYeaaaGcda qadaqaaiaaigdacqGHRaWkdaabdaqaaiaadIhaaiaawEa7caGLiWoa aiaawIcacaGLPaaadaahaaWcbeqaaiaad6eaaaGccaaISaGaaGzbVl aaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI4SaamiramaaBaaa leaacaaIXaaabeaakiaai6caaaa@58B7@  (8)

Обратно, для функции u(x,t) C n ×(0,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolaadoeadaahaaWcbeqa aiabg6HiLcaakmaabmaabaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaad6gaaaGccqGHxdaT caaIOaGaaGimaiaaiYcacqGHEisPcaaIPaaacaGLOaGaayzkaaaaaa@554C@ , удовлетворяющей 1) и 3), существует единственное распределение ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5baa@3A53@  из S n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8NeXpLbauaadaqadaqa amrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHi 1aaWbaaSqabeaacaWGUbaaaaGccaGLOaGaayzkaaaaaa@5162@  такое, что (Γ(x,t),ψ)=u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacqqHto WrcaaIOaGaamiEaiabgkHiTiabgwSixlaaiYcacaWG0bGaaGykaiaa iYcacqaHipqEcaaIPaGaaGypaiaadwhacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@4AF0@ .

Очевидно, в формулировке теоремы можно заменить D 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseadaWgaa WcbaGaaGymaaqabaaaaa@3A35@  на произвольный слой D T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseadaWgaa WcbaGaamivaaqabaaaaa@3A53@ .

Обобщенные функции с компактным носителем были охарактеризованы подобным образом в [15]. Следующее утверждение является уточнением результата из этой работы. А именно, в оценке улучшается показатель экспоненты с d K 2 (x)/8t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgkHiTiaads gadaqhaaWcbaGaam4saaqaaiaaikdaaaGccaaIOaGaamiEaiaaiMca caaIVaGaaGioaiaadshaaaa@40F4@  до d K 2 (x)/4t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgkHiTiaads gadaqhaaWcbaGaam4saaqaaiaaikdaaaGccaaIOaGaamiEaiaaiMca caaIVaGaaGinaiaadshaaaa@40F0@ .

Теорема 2. Пусть K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4729@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  непустой выпуклый компакт и supp ψK. Тогда для решения u(x,t)=(Γ(x,t),ψ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaai2dacaaIOaGaeu4KdCKaaGik aiaadIhacqGHsislcqGHflY1caaISaGaamiDaiaaiMcacaaISaGaeq iYdKNaaGykaaaa@4AF0@  задачи Коши (1) справедлива оценка

u(x,t) C t L 1+ x N e d K 2 (x) 4t ,x n ,0<tT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qaiaadshadaahaaWcbeqaaiabgkHiTiaadYeaaaGcda qadaqaaiaaigdacqGHRaWkdaabdaqaaiaadIhaaiaawEa7caGLiWoa aiaawIcacaGLPaaadaahaaWcbeqaaiaad6eaaaGccaWGLbWaaWbaaS qabeaacqGHsisldaWcaaqaaiaadsgadaqhaaqaaiaadUeaaeaacaaI YaaaaiaaiIcacaWG4bGaaGykaaqaaiaaisdacaWG0baaaaaakiaaiY cacaaMf8UaamiEaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaWGUbaaaOGaaGilai aaysW7caaMe8UaaGimaiaaiYdacaWG0bGaeyizImQaamivaiaai6ca aaa@7170@  (9)

Доказательство. При d K (x) t 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacqGHKjYOcaWG0bWa aWbaaSqabeaacaaIXaGaaG4laiaaikdaaaaaaa@41E1@  из (8) получаем

u x,t C t L 1+ x N C 1 t L 1+ x N e d K 2 (x) 4t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDamaabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaaacaGL hWUaayjcSdGaeyizImQaam4qaiaadshadaahaaWcbeqaaiabgkHiTi aadYeaaaGcdaqadaqaaiaaigdacqGHRaWkdaabdaqaaiaadIhaaiaa wEa7caGLiWoaaiaawIcacaGLPaaadaahaaWcbeqaaiaad6eaaaGccq GHKjYOcaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaamiDamaaCaaaleqa baGaeyOeI0IaamitaaaakmaabmaabaGaaGymaiabgUcaRmaaemaaba GaamiEaaGaay5bSlaawIa7aaGaayjkaiaawMcaamaaCaaaleqabaGa amOtaaaakiaadwgadaahaaWcbeqaaiabgkHiTmaalaaabaGaamizam aaDaaabaGaam4saaqaaiaaikdaaaGaaGikaiaadIhacaaIPaaabaGa aGinaiaadshaaaaaaOGaaGOlaaaa@66C1@

Существует семейство функций μ ε C 0 ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTnaaBa aaleaacqaH1oqzaeqaaOGaeyicI4Saam4qamaaDaaaleaacaaIWaaa baGaeyOhIukaaOGaaGikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaWGUbaaaOGaaGykaaaa @4E0D@ , ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew7aLjaai6 dacaaIWaaaaa@3BAE@ , каждая из которых равна единице в некоторой окрестности K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ , и такова, что μ ε (x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeY7aTnaaBa aaleaacqaH1oqzaeqaaOGaaGikaiaadIhacaaIPaGaaGypaiaaicda aaa@3FFB@  при d K (x)ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacqGHLjYScqaH1oqz aaa@4043@ , причем [16, гл. 1, § 4]

x k μ ε x C k ε |k| , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaey OaIy7aa0baaSqaaiaadIhaaeaacaWGRbaaaOGaeqiVd02aaSbaaSqa aiabew7aLbqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawE a7caGLiWoacqGHKjYOcaWGdbWaaSbaaSqaaiaadUgaaeqaaOGaeqyT du2aaWbaaSqabeaacqGHsislcaaI8bGaam4AaiaaiYhaaaGccaaISa aaaa@4F6A@

где постоянные C k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeadaWgaa WcbaGaam4Aaaqabaaaaa@3A69@  не зависят от ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew7aLbaa@3A2C@ .

Пусть d K (x)> t 1/2 >ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacaaI+aGaamiDamaa CaaaleqabaGaaGymaiaai+cacaaIYaaaaOGaaGOpaiabew7aLjaai6 dacaaIWaaaaa@44EF@  и K B R (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZcaWGcbWaaSbaaSqaaiaadkfaaeqaaOGaaGikaiaaicdacaaIPaaa aa@3F44@ . Положим K ε ={x n | d K (x)ε} B R+ t 1/2 (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeadaWgaa WcbaGaeqyTdugabeaakiaai2dacaaI7bGaamiEaiabgIGioprr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaS qabeaacaWGUbaaaOGaaGjcVlaaiYhacaaMi8UaamizamaaBaaaleaa caWGlbaabeaakiaaiIcacaWG4bGaaGykaiabgsMiJkabew7aLjaai2 hacqGHckcZcaWGcbWaaSbaaSqaaiaadkfacqGHRaWkcaWG0bWaaWba aeqabaGaaGymaiaai+cacaaIYaaaaaqabaGccaaIOaGaaGimaiaaiM caaaa@6259@ . По теореме Л. Шварца [17, гл. 2, § 8] любая обобщенная функция ψ S ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5jabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8Ne XpLbauaacaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39 gaiyaacqGFDeIudaahaaWcbeqaaiaad6gaaaGccaaIPaaaaa@5490@  имеет конечный порядок и существуют числа N0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6eacqGHLj YScaaIWaaaaa@3BD8@ , C>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeacaaI+a GaaGimaaaa@3ACF@  такие, что

u(x,t) = Γ x,t μ ε ,ψ C sup |k|N,y n 1+ y N y k Γ xy,t μ ε y = =C sup |k|N,y K ε 1+ y N y k Γ xy,t μ ε y C t L 1+R+ t 1/2 N e ( d K (x)ε) 2 4t × × |k|N ε |k| R+|x|+ t 1/2 N|k| . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaiaawEa7caGL iWoacaaI9aWaaqWaaeaadaqadaqaaiabfo5ahnaabmaabaGaamiEai abgkHiTiabgwSixlaaiYcacaWG0baacaGLOaGaayzkaaGaeqiVd02a aSbaaSqaaiabew7aLbqabaGccaaISaGaeqiYdKhacaGLOaGaayzkaa aacaGLhWUaayjcSdGaeyizImkabaGaeyizImQaam4qamaawafabeWc baGaaGiFaiaadUgacaaI8bGaeyizImQaamOtaiaaiYcacaaMe8Uaam yEaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac faGae8xhHi1aaWbaaeqabaGaamOBaaaaaeqakeaaciGGZbGaaiyDai aacchaaaWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaacaWG5baacaGL hWUaayjcSdaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGobaaaOWaaq WaaeaacqGHciITdaqhaaWcbaGaamyEaaqaaiaadUgaaaGcdaWadaqa aiabfo5ahnaabmaabaGaamiEaiabgkHiTiaadMhacaaISaGaamiDaa GaayjkaiaawMcaaiabeY7aTnaaBaaaleaacqaH1oqzaeqaaOWaaeWa aeaacaWG5baacaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGLhWUaay jcSdGaaGypaaqaaiaai2dacaWGdbWaaybuaeqaleaacaaI8bGaam4A aiaaiYhacqGHKjYOcaWGobGaaGilaiaaysW7caWG5bGaeyicI4Saam 4samaaBaaabaGaeqyTdugabeaaaeqakeaaciGGZbGaaiyDaiaaccha aaWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaacaWG5baacaGLhWUaay jcSdaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGobaaaOWaaqWaaeaa cqGHciITdaqhaaWcbaGaamyEaaqaaiaadUgaaaGcdaWadaqaaiabfo 5ahnaabmaabaGaamiEaiabgkHiTiaadMhacaaISaGaamiDaaGaayjk aiaawMcaaiabeY7aTnaaBaaaleaacqaH1oqzaeqaaOWaaeWaaeaaca WG5baacaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGLhWUaayjcSdGa eyizImkabaGaeyizImQaam4qaiaadshadaahaaWcbeqaaiabgkHiTi aadYeaaaGcdaqadaqaaiaaigdacqGHRaWkcaWGsbGaey4kaSIaamiD amaaCaaaleqabaGaaGymaiaai+cacaaIYaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaWGobaaaOGaamyzamaaCaaaleqabaGaeyOeI0Ya aSaaaeaacaaIOaGaamizamaaBaaabaGaam4saaqabaGaaGikaiaadI hacaaIPaGaeyOeI0IaeqyTduMaaGykamaaCaaabeqaaiaaikdaaaaa baGaaGinaiaadshaaaaaaOGaey41aqlabaGaey41aq7aaabuaeqale aacaaI8bGaam4AaiaaiYhacqGHKjYOcaWGobaabeqdcqGHris5aOGa eqyTdu2aaWbaaSqabeaacqGHsislcaaI8bGaam4AaiaaiYhaaaGcda qadaqaaiaadkfacqGHRaWkcaaI8bGaamiEaiaaiYhacqGHRaWkcaWG 0bWaaWbaaSqabeaacaaIXaGaaG4laiaaikdaaaaakiaawIcacaGLPa aadaahaaWcbeqaaiaad6eacqGHsislcaaI8bGaam4AaiaaiYhaaaGc caaIUaaaaaa@01BF@

Нужная оценка получается, если положить ε=t/( d K (x)+ t 1/2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew7aLjaai2 dacaWG0bGaaG4laiaaiIcacaWGKbWaaSbaaSqaaiaadUeaaeqaaOGa aGikaiaadIhacaaIPaGaey4kaSIaamiDamaaCaaaleqabaGaaGymai aai+cacaaIYaaaaOGaaGykaaaa@469D@  и использовать неравенство d K (x) x +R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacqGHKjYOdaabdaqa aiaadIhaaiaawEa7caGLiWoacqGHRaWkcaWGsbaaaa@4463@ :

u(x,t) C t L 1 1+ x N 1 e d K 2 (x) 4t + d K (x) 2( d K (x)+ t 1/2 ) t 4( d K (x)+ t 1/2 ) 2 C t L 1 1+ x N 1 e d K 2 (x) 4t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaiaawEa7caGL iWoacqGHKjYOcaWGdbGaamiDamaaCaaaleqabaGaeyOeI0Iaamitam aaBaaabaGaaGymaaqabaaaaOWaaeWaaeaacaaIXaGaey4kaSYaaqWa aeaacaWG4baacaGLhWUaayjcSdaacaGLOaGaayzkaaWaaWbaaSqabe aacaWGobWaaSbaaeaacaaIXaaabeaaaaGccaWGLbWaaWbaaSqabeaa cqGHsisldaWcaaqaaiaadsgadaqhaaqaaiaadUeaaeaacaaIYaaaai aaiIcacaWG4bGaaGykaaqaaiaaisdacaWG0baaaiabgUcaRmaalaaa baGaamizamaaBaaabaGaam4saaqabaGaaGikaiaadIhacaaIPaaaba GaaGOmaiaaiIcacaWGKbWaaSbaaeaacaWGlbaabeaacaaIOaGaamiE aiaaiMcacqGHRaWkcaWG0bWaaWbaaeqabaGaaGymaiaai+cacaaIYa aaaiaaiMcaaaGaeyOeI0YaaSaaaeaacaWG0baabaGaaGinaiaaiIca caWGKbWaaSbaaeaacaWGlbaabeaacaaIOaGaamiEaiaaiMcacqGHRa WkcaWG0bWaaWbaaeqabaGaaGymaiaai+cacaaIYaaaaiaaiMcadaah aaqabeaacaaIYaaaaaaaaaGccqGHKjYOaeaacqGHKjYOcaWGdbGaam iDamaaCaaaleqabaGaeyOeI0IaamitamaaBaaabaGaaGymaaqabaaa aOWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaacaWG4baacaGLhWUaay jcSdaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGobWaaSbaaeaacaaI XaaabeaaaaGccaWGLbWaaWbaaSqabeaacqGHsisldaWcaaqaaiaads gadaqhaaqaaiaadUeaaeaacaaIYaaaaiaaiIcacaWG4bGaaGykaaqa aiaaisdacaWG0baaaaaakiaai6caaaaa@90BF@

Теорема доказана.

Получим теперь необходимое и достаточное условие принадлежности носителя начальной функции заданному выпуклому компакту K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ . Отметим, что в методе теплового ядра [15] для описания обобщенных функций с компактным носителем используются значения решения u=(Γ(x,t),ψ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaI9a GaaGikaiabfo5ahjaaiIcacaWG4bGaeyOeI0IaeyyXICTaaGilaiaa dshacaaIPaGaaGilaiabeI8a5jaaiMcaaaa@46DF@  во всем слое D T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseadaWgaa WcbaGaamivaaqabaaaaa@3A53@ . Здесь же требуется знание решения лишь в один момент времени.

Обозначим через h K (x)= sup yK (x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacaaI9aWaaubeaeqa leaacaWG5bGaeyicI4Saam4saaqabOqaaiGacohacaGG1bGaaiiCaa aacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaaaa@4832@  опорную функцию выпуклого множества K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4729@ .

Теорема 3. Пусть u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  решение задачи Коши (1), удовлетворяющее для некоторых постоянных C>0,N,L0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeacaaI+a GaaGimaiaaiYcacaWGobGaaGilaiaadYeacqGHLjYScaaIWaaaaa@405F@  оценке

u x,t C 1+ x N t L , x,t D T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDamaabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaaacaGL hWUaayjcSdGaeyizImQaam4qamaabmaabaGaaGymaiabgUcaRmaaem aabaGaamiEaaGaay5bSlaawIa7aaGaayjkaiaawMcaamaaCaaaleqa baGaamOtaaaakiaadshadaahaaWcbeqaaiabgkHiTiaadYeaaaGcca aISaGaaGzbVpaabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzk aaGaeyicI4SaamiramaaBaaaleaacaWGubaabeaakiaaiYcaaaa@591B@  (10)

и K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4729@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  непустой выпуклый компакт. Тогда supp ψK, если и только если существуют константы C 1 >0, N 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeadaWgaa WcbaGaaGymaaqabaGccaaI+aGaaGimaiaaiYcacaaMe8UaamOtamaa BaaaleaacaaIXaaabeaakiabgwMiZkaaicdaaaa@4247@  такие, что

u(x,T) C 1 1+ x N 1 e d K 2 (x) 4T ,x n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadsfacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qamaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGymai abgUcaRmaaemaabaGaamiEaaGaay5bSlaawIa7aaGaayjkaiaawMca amaaCaaaleqabaGaamOtamaaBaaabaGaaGymaaqabaaaaOGaamyzam aaCaaaleqabaGaeyOeI0YaaSaaaeaacaWGKbWaa0baaeaacaWGlbaa baGaaGOmaaaacaaIOaGaamiEaiaaiMcaaeaacaaI0aGaamivaaaaaa GccaaISaGaaGzbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaamOBaaaaki aai6caaaa@6738@  (11)

Доказательство. Необходимость следует из теоремы 2. Установим достаточность. Пусть выполнено условие (11) . По теореме Мацузавы при выполнении (10) решение u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@  может быть представлено в виде потенциала Пуассона (Γ(x,T),ψ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacqqHto WrcaaIOaGaamiEaiabgkHiTiabgwSixlaaiYcacaWGubGaaGykaiaa iYcacqaHipqEcaaIPaaaaa@44FE@  для некоторой функции ψ S ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5jabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8Ne XpLbauaacaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39 gaiyaacqGFDeIudaahaaWcbeqaaiaad6gaaaGccaaIPaaaaa@5490@ . По теореме Л. Шварца

u(x+iy,T) = Γ(x+iy,T),ψ C sup |k|N,ξ n 1+ ξ N x k Γ(x+iyξ,T) C T L x+iy + T 1/2 N 1 e |y | 2 4T C x+iy +1 N 1 e |y | 2 4T . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aacaWG1bGaaGikaiaadIhacqGHRaWkcaWGPbGaamyEaiaaiYcacaWG ubGaaGykaaGaay5bSlaawIa7aiaai2dadaabdaqaamaabmaabaGaeu 4KdCKaaGikaiaadIhacqGHRaWkcaWGPbGaamyEaiabgkHiTiabgwSi xlaaiYcacaWGubGaaGykaiaaiYcacqaHipqEaiaawIcacaGLPaaaai aawEa7caGLiWoacqGHKjYOaeaacqGHKjYOcaWGdbWaaybuaeqaleaa caaI8bGaam4AaiaaiYhacqGHKjYOcaWGobGaaGilaiaaysW7cqaH+o aEcqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab=1risnaaCaaabeqaaiaad6gaaaaabeGcbaGaci4Caiaacwhaca GGWbaaamaabmaabaGaaGymaiabgUcaRmaaemaabaGaeqOVdGhacaGL hWUaayjcSdaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGobaaaOWaaq WaaeaacqGHciITdaqhaaWcbaGaamiEaaqaaiaadUgaaaGccqqHtoWr caaIOaGaamiEaiabgUcaRiaadMgacaWG5bGaeyOeI0IaeqOVdGNaaG ilaiaadsfacaaIPaaacaGLhWUaayjcSdGaeyizImkabaGaeyizImQa am4qaiaadsfadaahaaWcbeqaaiabgkHiTiaadYeaaaGcdaqadaqaam aaemaabaGaamiEaiabgUcaRiaadMgacaWG5baacaGLhWUaayjcSdGa ey4kaSIaamivamaaCaaaleqabaGaaGymaiaai+cacaaIYaaaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaWGobWaaSbaaeaacaaIXaaabeaa aaGccaWGLbWaaWbaaSqabeaadaWcaaqaaiaaiYhacaWG5bGaaGiFam aaCaaabeqaaiaaikdaaaaabaGaaGinaiaadsfaaaaaaOGaeyizImka baGaeyizImQaam4qamaabmaabaWaaqWaaeaacaWG4bGaey4kaSIaam yAaiaadMhaaiaawEa7caGLiWoacqGHRaWkcaaIXaaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGobWaaSbaaeaacaaIXaaabeaaaaGccaWGLb WaaWbaaSqabeaadaWcaaqaaiaaiYhacaWG5bGaaGiFamaaCaaabeqa aiaaikdaaaaabaGaaGinaiaadsfaaaaaaOGaaGOlaaaaaa@C38E@

Учитывая (11) , заключаем, что функция u(z,T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamOEaiaaiYcacaWGubGaaGykaaaa@3D72@  удовлетворяет условиям теоремы 1 и, следовательно,

u z,T C z +1 N e |y | 2 d K 2 (x) 4T ,z n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDamaabmaabaGaamOEaiaaiYcacaWGubaacaGLOaGaayzkaaaacaGL hWUaayjcSdGaeyizImQaam4qamaabmaabaWaaqWaaeaacaWG6baaca GLhWUaayjcSdGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqa baGaamOtaaaakiaadwgadaahaaWcbeqaamaalaaabaGaaGiFaiaadM hacaaI8bWaaWbaaeqabaGaaGOmaaaacqGHsislcaWGKbWaa0baaeaa caWGlbaabaGaaGOmaaaacaaIOaGaamiEaiaaiMcaaeaacaaI0aGaam ivaaaaaaGccaaISaGaaGzbVlaadQhacqGHiiIZtuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jqidnaaCaaaleqabaGaam OBaaaakiaai6caaaa@6953@

Рассмотрим преобразование Фурье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ Лапласа от решения u(z,T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamOEaiaaiYcacaWGubGaaGykaaaa@3D72@ :

u ˜ ξ+iη,T = n u x,T e i ξ+iη,x dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadwhagaacam aabmaabaGaeqOVdGNaey4kaSIaamyAaiabeE7aOjaaiYcacaWGubaa caGLOaGaayzkaaGaaGypamaapebabeWcbaWefv3ySLgznfgDOjdary qr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaqabeaacaWGUbaa aaqab0Gaey4kIipakiaadwhadaqadaqaaiaadIhacaaISaGaamivaa GaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiaadMgadaaa daqaaiabe67a4jabgUcaRiaadMgacqaH3oaAcaaISaGaamiEaaGaay zkJiaawQYiaaaakiaayIW7caWGKbGaamiEaiaai6caaaa@658A@

Так как функция u(x+iy,T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiabgUcaRiaadMgacaWG5bGaaGilaiaadsfacaaIPaaaaa@403E@  быстро убывает при x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHsg IRcqGHEisPaaa@3CE0@ , то можно сдвинуть плоскость интегрирования:

u ˜ ξ+iη,T = n u x+iy,T e i ξ+iη,x+iy dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadwhagaacam aabmaabaGaeqOVdGNaey4kaSIaamyAaiabeE7aOjaaiYcacaWGubaa caGLOaGaayzkaaGaaGypamaapebabeWcbaWefv3ySLgznfgDOjdary qr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaqabeaacaWGUbaa aaqab0Gaey4kIipakiaadwhadaqadaqaaiaadIhacqGHRaWkcaWGPb GaamyEaiaaiYcacaWGubaacaGLOaGaayzkaaGaamyzamaaCaaaleqa baGaeyOeI0IaamyAamaaamaabaGaeqOVdGNaey4kaSIaamyAaiabeE 7aOjaaiYcacaWG4bGaey4kaSIaamyAaiaadMhaaiaawMYicaGLQmca aaGccaaMi8UaamizaiaadIhacaaIUaaaaa@6B26@

Поскольку e i ξ+iη,x+iy = e (x,η)+(y,ξ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yzamaaCaaaleqabaGaeyOeI0IaamyAamaaamaabaGaeqOVdGNaey4k aSIaamyAaiabeE7aOjaaiYcacaWG4bGaey4kaSIaamyAaiaadMhaai aawMYicaGLQmcaaaaakiaawEa7caGLiWoacaaI9aGaamyzamaaCaaa leqabaGaaGikaiaadIhacaaISaGaeq4TdGMaaGykaiabgUcaRiaaiI cacaWG5bGaaGilaiabe67a4jaaiMcaaaaaaa@5693@ , то получим

u ˜ ξ+iη,T C e (y,ξ) n u(x+iy,T) e (x,η) dx C e (y,ξ)+ |y | 2 4T n 1+ x+iy N e (x,η) d K 2 (x) 4T dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aaceWG1bGbaGaadaqadaqaaiabe67a4jabgUcaRiaadMgacqaH3oaA caaISaGaamivaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgsMiJk aadoeacaWGLbWaaWbaaSqabeaacaaIOaGaamyEaiaaiYcacqaH+oaE caaIPaaaaOWaa8qeaeqaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGqbaiab=1risnaaCaaabeqaaiaad6gaaaaabeqdcqGH RiI8aOWaaqWaaeaacaWG1bGaaGikaiaadIhacqGHRaWkcaWGPbGaam yEaiaaiYcacaWGubGaaGykaaGaay5bSlaawIa7aiaadwgadaahaaWc beqaaiaaiIcacaWG4bGaaGilaiabeE7aOjaaiMcaaaGccaaMi8Uaam izaiaadIhacqGHKjYOaeaacqGHKjYOcaWGdbGaamyzamaaCaaaleqa baGaaGikaiaadMhacaaISaGaeqOVdGNaaGykaiabgUcaRmaalaaaba GaaGiFaiaadMhacaaI8bWaaWbaaeqabaGaaGOmaaaaaeaacaaI0aGa amivaaaaaaGcdaWdraqabSqaaiab=1risnaaCaaabeqaaiaad6gaaa aabeqdcqGHRiI8aOWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaacaWG 4bGaey4kaSIaamyAaiaadMhaaiaawEa7caGLiWoaaiaawIcacaGLPa aadaahaaWcbeqaaiaad6eaaaGccaWGLbWaaWbaaSqabeaacaaIOaGa amiEaiaaiYcacqaH3oaAcaaIPaGaeyOeI0YaaSaaaeaacaWGKbWaa0 baaeaacaWGlbaabaGaaGOmaaaacaaIOaGaamiEaiaaiMcaaeaacaaI 0aGaamivaaaaaaGccaaMi8UaamizaiaadIhacaaIUaaaaaa@A13F@

Минимизируя выражение y,ξ + y 2 4T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaam yEaiaaiYcacqaH+oaEaiaawIcacaGLPaaacqGHRaWkdaWcaaqaamaa emaabaGaamyEaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaaaO qaaiaaisdacaWGubaaaaaa@4521@  по y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhaaaa@3983@ , получим y * =2Tξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhadaahaa WcbeqaaiaaiQcaaaGccaaI9aGaeyOeI0IaaGOmaiaadsfacqaH+oaE aaa@3F7A@ , e ( y * ,ξ)+ | y * | 2 4T = e T|ξ | 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwgadaahaa WcbeqaaiaaiIcacaWG5bWaaWbaaeqabaGaaGOkaaaacaaISaGaeqOV dGNaaGykaiabgUcaRmaalaaabaGaaGiFaiaadMhadaahaaqabeaaca aIQaaaaiaaiYhadaahaaqabeaacaaIYaaaaaqaaiaaisdacaWGubaa aaaakiaai2dacaWGLbWaaWbaaSqabeaacqGHsislcaWGubGaaGiFai abe67a4jaaiYhadaahaaqabeaacaaIYaaaaaaaaaa@4EF0@  и

u~ξ+iη,TCeTξ2n1+x2iTξNex,ηdK2x4Tdx==CeTξ2n1+x2iTξ+2TηNex+2Tη,ηdK2x+2Tη4Tdx==CeTξ2n1+x2iTξ+iηNsupaKexa,η+a,ηx+2Tηa24T+2Tη2dxCeTξ2n1+x2iTξ+iηNaKea,η××aKexa,ηxa24Txa,ηTη2+2Tη2dx=

=CeTη2Tξ2+hKηn1+x2iTξ+iηNaKexa24Tdx==CeTη2Tξ2+hKηn1+x2iTξ+iηNedK2x4TdxCeTξ2n1+x2iTξ+iηNaKea,η××aKexa,ηxa24Txa,ηTη2+2Tη2dx==CeTη2Tξ2+hKηn1+x2iTξ+iηNsupaKexa24Tdx=

=CeTη2Tξ2+hKηn1+x2iTξ+iηNedK2x4Tdx.

Пусть K B R (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZcaWGcbWaaSbaaSqaaiaadkfaaeqaaOGaaGikaiaaicdacaaIPaaa aa@3F44@ . Разделим получившийся интеграл на две части и оценим их по отдельности:

B 2R (0) 1+ x2iT ξ+iη N e d K 2 (x) 4T dx C B 2R (0) 1+ x2iT ξ+iη N dx C R n 1+ R +2T ξ+iη N C 1+ ξ+iη N , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qeae qaleaacaWGcbWaaSbaaeaacaaIYaGaamOuaaqabaGaaGikaiaaicda caaIPaaabeqdcqGHRiI8aOWaaeWaaeaacaaIXaGaey4kaSYaaqWaae aacaWG4bGaeyOeI0IaaGOmaiaadMgacaWGubWaaeWaaeaacqaH+oaE cqGHRaWkcaWGPbGaeq4TdGgacaGLOaGaayzkaaaacaGLhWUaayjcSd aacaGLOaGaayzkaaWaaWbaaSqabeaacaWGobaaaOGaamyzamaaCaaa leqabaGaeyOeI0YaaSaaaeaacaWGKbWaa0baaeaacaWGlbaabaGaaG OmaaaacaaIOaGaamiEaiaaiMcaaeaacaaI0aGaamivaaaaaaGccaaM i8UaamizaiaadIhacqGHKjYOaeaacqGHKjYOcaWGdbWaa8qeaeqale aacaWGcbWaaSbaaeaacaaIYaGaamOuaaqabaGaaGikaiaaicdacaaI PaaabeqdcqGHRiI8aOWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaaca WG4bGaeyOeI0IaaGOmaiaadMgacaWGubWaaeWaaeaacqaH+oaEcqGH RaWkcaWGPbGaeq4TdGgacaGLOaGaayzkaaaacaGLhWUaayjcSdaaca GLOaGaayzkaaWaaWbaaSqabeaacaWGobaaaOGaaGjcVlaadsgacaWG 4bGaeyizImkabaGaeyizImQaaGjcVlaadoeacaWGsbWaaWbaaSqabe aacaWGUbaaaOWaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaacaWGsbaa caGLhWUaayjcSdGaey4kaSIaaGOmaiaadsfadaabdaqaaiabe67a4j abgUcaRiaadMgacqaH3oaAaiaawEa7caGLiWoaaiaawIcacaGLPaaa daahaaWcbeqaaiaad6eaaaGccqGHKjYOcaWGdbWaaeWaaeaacaaIXa Gaey4kaSYaaqWaaeaacqaH+oaEcqGHRaWkcaWGPbGaeq4TdGgacaGL hWUaayjcSdaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGobaaaOGaaG ilaaaaaa@A951@

а для точек вне шара B 2R (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkeadaWgaa WcbaGaaGOmaiaadkfaaeqaaOGaaGikaiaaicdacaaIPaaaaa@3D34@  расстояние d K (x) x /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacqGHLjYSdaabdaqa aiaadIhaaiaawEa7caGLiWoacaaIVaGaaGOmaaaa@4430@  и

n \ B 2R (0) 1+ x2iT ξ+iη N e d K 2 (x) 4T dx n 1+ x N +2T ξ+iη N e |x | 2 16T dxC 1+ ξ+iη N . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaa8qeae qaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab =1risnaaCaaabeqaaiaad6gaaaGaaiixaiaadkeadaWgaaqaaiaaik dacaWGsbaabeaacaaIOaGaaGimaiaaiMcaaeqaniabgUIiYdGcdaqa daqaaiaaigdacqGHRaWkdaabdaqaaiaadIhacqGHsislcaaIYaGaam yAaiaadsfadaqadaqaaiabe67a4jabgUcaRiaadMgacqaH3oaAaiaa wIcacaGLPaaaaiaawEa7caGLiWoaaiaawIcacaGLPaaadaahaaWcbe qaaiaad6eaaaGccaWGLbWaaWbaaSqabeaacqGHsisldaWcaaqaaiaa dsgadaqhaaqaaiaadUeaaeaacaaIYaaaaiaaiIcacaWG4bGaaGykaa qaaiaaisdacaWGubaaaaaakiaayIW7caWGKbGaamiEaiabgsMiJcqa aiabgsMiJoaapebabeWcbaGae8xhHi1aaWbaaeqabaGaamOBaaaaae qaniabgUIiYdGcdaqadaqaaiaaigdacqGHRaWkdaabdaqaaiaadIha aiaawEa7caGLiWoadaahaaWcbeqaaiaad6eaaaGccqGHRaWkcaaIYa GaamivamaaemaabaGaeqOVdGNaey4kaSIaamyAaiabeE7aObGaay5b SlaawIa7amaaCaaaleqabaGaamOtaaaaaOGaayjkaiaawMcaaiaadw gadaahaaWcbeqaaiabgkHiTmaalaaabaGaaGiFaiaadIhacaaI8bWa aWbaaeqabaGaaGOmaaaaaeaacaaIXaGaaGOnaiaadsfaaaaaaOGaaG jcVlaadsgacaWG4bGaeyizImQaam4qamaabmaabaGaaGymaiabgUca RmaaemaabaGaeqOVdGNaey4kaSIaamyAaiabeE7aObGaay5bSlaawI a7aaGaayjkaiaawMcaamaaCaaaleqabaGaamOtaaaakiaai6caaaaa @A205@

Окончательно получаем

u ˜ ξ+iη,T C 1+ ξ+iη N e h K (η)+T(|η | 2 |ξ | 2 ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGabm yDayaaiaWaaeWaaeaacqaH+oaEcqGHRaWkcaWGPbGaeq4TdGMaaGil aiaadsfaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHKjYOcaWGdb WaaeWaaeaacaaIXaGaey4kaSYaaqWaaeaacqaH+oaEcqGHRaWkcaWG PbGaeq4TdGgacaGLhWUaayjcSdaacaGLOaGaayzkaaWaaWbaaSqabe aacaWGobaaaOGaamyzamaaCaaaleqabaGaamiAamaaBaaabaGaam4s aaqabaGaaGikaiabeE7aOjaaiMcacqGHRaWkcaWGubGaaGikaiaaiY hacqaH3oaAcaaI8bWaaWbaaeqabaGaaGOmaaaacqGHsislcaaI8bGa eqOVdGNaaGiFamaaCaaabeqaaiaaikdaaaGaaGykaaaakiaai6caaa a@682D@

С другой стороны, из равенства u(x,T)=(Γ(x,T),ψ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWGubGaaGykaiaai2dacaaIOaGaeu4KdCKaaGik aiaadIhacqGHsislcqGHflY1caaISaGaamivaiaaiMcacaaISaGaeq iYdKNaaGykaaaa@4AB0@  следует, что

u ˜ ξ,T = Γ ˜ ξ,T ψ ˜ ξ = e T|ξ | 2 ψ ˜ ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadwhagaacam aabmaabaGaeqOVdGNaaGilaiaadsfaaiaawIcacaGLPaaacaaI9aGa fu4KdCKbaGaadaqadaqaaiabe67a4jaaiYcacaWGubaacaGLOaGaay zkaaGafqiYdKNbaGaadaqadaqaaiabe67a4bGaayjkaiaawMcaaiaa i2dacaWGLbWaaWbaaSqabeaacqGHsislcaWGubGaaGiFaiabe67a4j aaiYhadaahaaqabeaacaaIYaaaaaaakiqbeI8a5zaaiaWaaeWaaeaa cqaH+oaEaiaawIcacaGLPaaacaaIUaaaaa@58E7@

В левой части стоит целая функция. Поэтому ψ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqbeI8a5zaaia aaaa@3A62@  также можно продолжить до целой функции по формуле

ψ ˜ ξ+iη = e T ξ+iη,ξ+iη u ˜ ξ+iη,T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqbeI8a5zaaia WaaeWaaeaacqaH+oaEcqGHRaWkcaWGPbGaeq4TdGgacaGLOaGaayzk aaGaaGypaiaadwgadaahaaWcbeqaaiaadsfadaaadaqaaiabe67a4j abgUcaRiaadMgacqaH3oaAcaaISaGaeqOVdGNaey4kaSIaamyAaiab eE7aObGaayzkJiaawQYiaaaakiqadwhagaacamaabmaabaGaeqOVdG Naey4kaSIaamyAaiabeE7aOjaaiYcacaWGubaacaGLOaGaayzkaaGa aGilaaaa@5B05@

причем

ψ ˜ ξ+iη = e T(|ξ | 2 |η | 2 ) u ˜ (ξ+iη,T) C 1+ ξ+iη N e T(|ξ | 2 |η | 2 ) e h K (η)+T(|η | 2 |ξ | 2 ) C 1+ ξ+iη N e h K (η) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aacuaHipqEgaacamaabmaabaGaeqOVdGNaey4kaSIaamyAaiabeE7a ObGaayjkaiaawMcaaaGaay5bSlaawIa7aiaai2dacaWGLbWaaWbaaS qabeaacaWGubGaaGikaiaaiYhacqaH+oaEcaaI8bWaaWbaaeqabaGa aGOmaaaacqGHsislcaaI8bGaeq4TdGMaaGiFamaaCaaabeqaaiaaik daaaGaaGykaaaakmaaemaabaGabmyDayaaiaGaaGikaiabe67a4jab gUcaRiaadMgacqaH3oaAcaaISaGaamivaiaaiMcaaiaawEa7caGLiW oacqGHKjYOaeaacqGHKjYOcaWGdbWaaeWaaeaacaaIXaGaey4kaSYa aqWaaeaacqaH+oaEcqGHRaWkcaWGPbGaeq4TdGgacaGLhWUaayjcSd aacaGLOaGaayzkaaWaaWbaaSqabeaacaWGobaaaOGaamyzamaaCaaa leqabaGaamivaiaaiIcacaaI8bGaeqOVdGNaaGiFamaaCaaabeqaai aaikdaaaGaeyOeI0IaaGiFaiabeE7aOjaaiYhadaahaaqabeaacaaI YaaaaiaaiMcaaaGccaWGLbWaaWbaaSqabeaacaWGObWaaSbaaeaaca WGlbaabeaacaaIOaGaeq4TdGMaaGykaiabgUcaRiaadsfacaaIOaGa aGiFaiabeE7aOjaaiYhadaahaaqabeaacaaIYaaaaiabgkHiTiaaiY hacqaH+oaEcaaI8bWaaWbaaeqabaGaaGOmaaaacaaIPaaaaOGaeyiz ImkabaGaeyizImQaam4qamaabmaabaGaaGymaiabgUcaRmaaemaaba GaeqOVdGNaey4kaSIaamyAaiabeE7aObGaay5bSlaawIa7aaGaayjk aiaawMcaamaaCaaaleqabaGaamOtaaaakiaadwgadaahaaWcbeqaai aadIgadaWgaaqaaiaadUeaaeqaaiaaiIcacqaH3oaAcaaIPaaaaOGa aGOlaaaaaa@A846@

По теореме Пэли MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ Винера MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@ Шварца [16, гл. 7, § 3] полученная оценка на ψ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqbeI8a5zaaia aaaa@3A62@  является необходимым и достаточным условием того, чтобы supp ψK.

Теорема доказана.

Из теорем 2 и 3 следует, что если для решения задачи Коши (1) выполнено (10) и для некоторого момента времени t(0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacqGHii IZcaaIOaGaaGimaiaaiYcacaWGubGaaGyxaaaa@3EE4@  справедлива оценка

u x,t C 1+ x N e d K 2 (x) 4t ,x n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDamaabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaaacaGL hWUaayjcSdGaeyizImQaam4qamaabmaabaGaaGymaiabgUcaRmaaem aabaGaamiEaaGaay5bSlaawIa7aaGaayjkaiaawMcaamaaCaaaleqa baGaamOtaaaakiaadwgadaahaaWcbeqaaiabgkHiTmaalaaabaGaam izamaaDaaabaGaam4saaqaaiaaikdaaaGaaGikaiaadIhacaaIPaaa baGaaGinaiaadshaaaaaaOGaaGilaiaaywW7caWG4bGaeyicI48efv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaah aaWcbeqaaiaad6gaaaGccaaISaaaaa@65CD@

то решение удовлетворяет (возможно, с другими константами) неравенству вида (9) .

Сформулируем полученное условие на скорость убывания решения в терминах опорной функции h K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIgadaWgaa WcbaGaam4saaqabaaaaa@3A6E@ . Она более удобна для практического определения формы выпуклого компакта K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ , чем расстояние d K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaaaaa@3A6A@ . Во-первых, поскольку функция h K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIgadaWgaa WcbaGaam4saaqabaaaaa@3A6E@  однородна степени один, достаточно найти ее значения на единичной сфере S n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadofadaahaa Wcbeqaaiaad6gacqGHsislcaaIXaaaaaaa@3C25@ . Во-вторых, ее значение в точке ζ S n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jabgI GiolaadofadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaaa@3F66@  задает опорное полупространство (x,ζ) h K (ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacaWG4b GaaGilaiabeA7a6jaaiMcacqGHKjYOcaWGObWaaSbaaSqaaiaadUea aeqaaOGaaGikaiabeA7a6jaaiMcaaaa@4424@ , которому принадлежит искомое множество K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ , причем пересечение всех опорных полупространств равно K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ .

При x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHsg IRcqGHEisPaaa@3CE0@  расстояние d K (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcaaaa@3CD6@  растет примерно как |x| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacaWG4b GaaGiFaaaa@3B8E@ . Установим более точную асимптотику.

Теорема 4. Пусть K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4729@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  непустой выпуклый компакт. Тогда

d K x = x h K x x +O 1 x ,x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaaI 9aWaaqWaaeaacaWG4baacaGLhWUaayjcSdGaeyOeI0IaamiAamaaBa aaleaacaWGlbaabeaakmaabmaabaWaaSaaaeaacaWG4baabaWaaqWa aeaacaWG4baacaGLhWUaayjcSdaaaaGaayjkaiaawMcaaiabgUcaRi aad+eadaqadaqaamaalaaabaGaaGymaaqaamaaemaabaGaamiEaaGa ay5bSlaawIa7aaaaaiaawIcacaGLPaaacaaISaGaaGzbVlaadIhacq GHsgIRcqGHEisPcaaIUaaaaa@5AF5@  (12)

Доказательство. Выберем R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkfaaaa@395C@  таким, чтобы K B R (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZcaWGcbWaaSbaaSqaaiaadkfaaeqaaOGaaGikaiaaicdacaaIPaaa aa@3F44@  и пусть x B R (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacuGHii IZgaGfaiaadkeadaWgaaWcbaGaamOuaaqabaGccaaIOaGaaGimaiaa iMcaaaa@3F16@ . Воспользуемся известной формулой [18, B.3], связывающей расстояние до выпуклого замкнутого множества и его опорную функцию: если x K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacuGHii IZgaGfaiaadUeaaaa@3BF3@ , то

d K x = sup ζ S n1 x,ζ h K ζ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaaI 9aWaaybuaeqaleaacqaH2oGEcqGHiiIZcaWGtbWaaWbaaeqabaGaam OBaiabgkHiTiaaigdaaaaabeGcbaGaci4CaiaacwhacaGGWbaaamaa dmaabaWaaeWaaeaacaWG4bGaaGilaiabeA7a6bGaayjkaiaawMcaai abgkHiTiaadIgadaWgaaWcbaGaam4saaqabaGcdaqadaqaaiabeA7a 6bGaayjkaiaawMcaaaGaay5waiaaw2faaiaai6caaaa@55CA@

Обозначим через ζ x S n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6naaBa aaleaacaWG4baabeaakiabgIGiolaadofadaahaaWcbeqaaiaad6ga cqGHsislcaaIXaaaaaaa@4099@  и p x K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadchadaWgaa WcbaGaamiEaaqabaGccqGHiiIZcaWGlbaaaa@3D01@  точки, для которых d K (x)=(x, ζ x ) h K ( ζ x ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacaaI9aGaaGikaiaa dIhacaaISaGaeqOTdO3aaSbaaSqaaiaadIhaaeqaaOGaaGykaiabgk HiTiaadIgadaWgaaWcbaGaam4saaqabaGccaaIOaGaeqOTdO3aaSba aSqaaiaadIhaaeqaaOGaaGykaaaa@4ADA@  и h K ( ζ x )= sup yK (y, ζ x )=( p x , ζ x ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIgadaWgaa WcbaGaam4saaqabaGccaaIOaGaeqOTdO3aaSbaaSqaaiaadIhaaeqa aOGaaGykaiaai2dadaqfqaqabSqaaiaadMhacqGHiiIZcaWGlbaabe GcbaGaci4CaiaacwhacaGGWbaaaiaaiIcacaWG5bGaaGilaiabeA7a 6naaBaaaleaacaWG4baabeaakiaaiMcacaaI9aGaaGikaiaadchada WgaaWcbaGaamiEaaqabaGccaaISaGaeqOTdO3aaSbaaSqaaiaadIha aeqaaOGaaGykaaaa@5412@ . Тогда

d K x = x p x , ζ x x p x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaaI 9aWaaeWaaeaacaWG4bGaeyOeI0IaamiCamaaBaaaleaacaWG4baabe aakiaaiYcacqaH2oGEdaWgaaWcbaGaamiEaaqabaaakiaawIcacaGL PaaacqGHKjYOdaabdaqaaiaadIhacqGHsislcaWGWbWaaSbaaSqaai aadIhaaeqaaaGccaGLhWUaayjcSdGaaGOlaaaa@50A3@

С другой стороны, d K (x) xy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGccaaIOaGaamiEaiaaiMcacqGHKjYOdaabdaqa aiaadIhacqGHsislcaWG5baacaGLhWUaayjcSdaaaa@4495@  для всех yK MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadMhacqGHii IZcaWGlbaaaa@3BD7@ . Следовательно, p x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadchadaWgaa WcbaGaamiEaaqabaaaaa@3AA3@  является ближайшей к x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhaaaa@3982@  точкой K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@ , т.е. d K x = x p x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsgadaWgaa WcbaGaam4saaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaaI 9aWaaqWaaeaacaWG4bGaeyOeI0IaamiCamaaBaaaleaacaWG4baabe aaaOGaay5bSlaawIa7aaaa@44F5@  и ζ x = x x p x x p . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6naaBa aaleaacaWG4baabeaakiaai2dadaWcaaqaaiaadIhacqGHsislcaWG 4bWaaSbaaSqaaiaadchaaeqaaaGcbaWaaqWaaeaacaWG4bGaeyOeI0 IaamiEamaaBaaaleaacaWGWbaabeaaaOGaay5bSlaawIa7aaaacaaI Uaaaaa@484A@  Для ν x = x x S n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe27aUnaaBa aaleaacaWG4baabeaakiaai2dadaWcaaqaaiaadIhaaeaadaabdaqa aiaadIhaaiaawEa7caGLiWoaaaGaeyicI4Saam4uamaaCaaaleqaba GaamOBaiabgkHiTiaaigdaaaaaaa@4687@  имеем

x, ν x h K ν x d K x = x, ζ x h K ζ x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaabmaabaGaam iEaiaaiYcacqaH9oGBdaWgaaWcbaGaamiEaaqabaaakiaawIcacaGL PaaacqGHsislcaWGObWaaSbaaSqaaiaadUeaaeqaaOWaaeWaaeaacq aH9oGBdaWgaaWcbaGaamiEaaqabaaakiaawIcacaGLPaaacqGHKjYO caWGKbWaaSbaaSqaaiaadUeaaeqaaOWaaeWaaeaacaWG4baacaGLOa GaayzkaaGaaGypamaabmaabaGaamiEaiaaiYcacqaH2oGEdaWgaaWc baGaamiEaaqabaaakiaawIcacaGLPaaacqGHsislcaWGObWaaSbaaS qaaiaadUeaaeqaaOWaaeWaaeaacqaH2oGEdaWgaaWcbaGaamiEaaqa baaakiaawIcacaGLPaaacaaISaaaaa@5B2C@

0 x x, ζ x = x, ν x ζ x h K ν x h K ζ x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaicdacqGHKj YOdaabdaqaaiaadIhaaiaawEa7caGLiWoacqGHsisldaqadaqaaiaa dIhacaaISaGaeqOTdO3aaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaay zkaaGaaGypamaabmaabaGaamiEaiaaiYcacqaH9oGBdaWgaaWcbaGa amiEaaqabaGccqGHsislcqaH2oGEdaWgaaWcbaGaamiEaaqabaaaki aawIcacaGLPaaacqGHKjYOcaWGObWaaSbaaSqaaiaadUeaaeqaaOWa aeWaaeaacqaH9oGBdaWgaaWcbaGaamiEaaqabaaakiaawIcacaGLPa aacqGHsislcaWGObWaaSbaaSqaaiaadUeaaeqaaOWaaeWaaeaacqaH 2oGEdaWgaaWcbaGaamiEaaqabaaakiaawIcacaGLPaaacaaIUaaaaa@6124@

Единичные векторы ν x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgkHiTiabe2 7aUnaaBaaaleaacaWG4baabeaaaaa@3C53@ , ζ x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabgkHiTiabeA 7a6naaBaaaleaacaWG4baabeaaaaa@3C58@  указывают направления из точки x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhaaaa@3982@  на начало координат и точку p x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadchadaWgaa WcbaGaamiEaaqabaaaaa@3AA3@  соответственно. Обе эти точки лежат в B R (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkeadaWgaa WcbaGaamOuaaqabaGccaaIOaGaaGimaiaaiMcaaaa@3C78@ . Поэтому | ν x ζ x | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiYhacqaH9o GBdaWgaaWcbaGaamiEaaqabaGccqGHsislcqaH2oGEdaWgaaWcbaGa amiEaaqabaGccaaI8baaaa@4159@  не превосходит величины плоского угла, под которым шар B R (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadkeadaWgaa WcbaGaamOuaaqabaGccaaIOaGaaGimaiaaiMcaaaa@3C78@  виден из точки x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhaaaa@3982@ , откуда

ν x ζ x =O 1 x ,x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabe27aUnaaBa aaleaacaWG4baabeaakiabgkHiTiabeA7a6naaBaaaleaacaWG4baa beaakiaai2dacaWGpbWaaeWaaeaadaWcaaqaaiaaigdaaeaadaabda qaaiaadIhaaiaawEa7caGLiWoaaaaacaGLOaGaayzkaaGaaGilaiaa ywW7caWG4bGaeyOKH4QaeyOhIuQaaGOlaaaa@4EB2@

Опорная функция h K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIgadaWgaa WcbaGaam4saaqabaaaaa@3A6E@  выпукла на n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbaaaaaa@445D@  и, следовательно, липшицева на S n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadofadaahaa Wcbeqaaiaad6gacqGHsislcaaIXaaaaaaa@3C25@  [19, § 5]. Поэтому

0 x, ν x ζ x h K ν x h K ζ x C ν x ζ x =O 1 x ,x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaaGimai abgsMiJoaabmaabaGaamiEaiaaiYcacqaH9oGBdaWgaaWcbaGaamiE aaqabaGccqGHsislcqaH2oGEdaWgaaWcbaGaamiEaaqabaaakiaawI cacaGLPaaacqGHKjYOcaWGObWaaSbaaSqaaiaadUeaaeqaaOWaaeWa aeaacqaH9oGBdaWgaaWcbaGaamiEaaqabaaakiaawIcacaGLPaaacq GHsislcaWGObWaaSbaaSqaaiaadUeaaeqaaOWaaeWaaeaacqaH2oGE daWgaaWcbaGaamiEaaqabaaakiaawIcacaGLPaaacqGHKjYOaeaacq GHKjYOcaWGdbWaaqWaaeaacqaH9oGBdaWgaaWcbaGaamiEaaqabaGc cqGHsislcqaH2oGEdaWgaaWcbaGaamiEaaqabaaakiaawEa7caGLiW oacaaI9aGaam4tamaabmaabaWaaSaaaeaacaaIXaaabaWaaqWaaeaa caWG4baacaGLhWUaayjcSdaaaaGaayjkaiaawMcaaiaaiYcacaaMf8 UaamiEaiabgkziUkabg6HiLkaai6caaaaa@71F6@

Отсюда заключаем, что

d K x = x, ζ x h K ζ x = x, ν x h K ν x x, ν x ζ x + h K ν x h K ζ x = = x h K x x +O 1 x ,x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamizam aaBaaaleaacaWGlbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMca aiaai2dadaqadaqaaiaadIhacaaISaGaeqOTdO3aaSbaaSqaaiaadI haaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaamiAamaaBaaaleaacaWG lbaabeaakmaabmaabaGaeqOTdO3aaSbaaSqaaiaadIhaaeqaaaGcca GLOaGaayzkaaGaaGypamaabmaabaGaamiEaiaaiYcacqaH9oGBdaWg aaWcbaGaamiEaaqabaaakiaawIcacaGLPaaacqGHsislcaWGObWaaS baaSqaaiaadUeaaeqaaOWaaeWaaeaacqaH9oGBdaWgaaWcbaGaamiE aaqabaaakiaawIcacaGLPaaacqGHsislaeaacqGHsislcaaMe8+aae WaaeaacaWG4bGaaGilaiabe27aUnaaBaaaleaacaWG4baabeaakiab gkHiTiabeA7a6naaBaaaleaacaWG4baabeaaaOGaayjkaiaawMcaai abgUcaRmaabmaabaGaamiAamaaBaaaleaacaWGlbaabeaakmaabmaa baGaeqyVd42aaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaGaey OeI0IaamiAamaaBaaaleaacaWGlbaabeaakmaabmaabaGaeqOTdO3a aSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaa GaaGypaaqaaiaai2dadaabdaqaaiaadIhaaiaawEa7caGLiWoacqGH sislcaWGObWaaSbaaSqaaiaadUeaaeqaaOWaaeWaaeaadaWcaaqaai aadIhaaeaadaabdaqaaiaadIhaaiaawEa7caGLiWoaaaaacaGLOaGa ayzkaaGaey4kaSIaam4tamaabmaabaWaaSaaaeaacaaIXaaabaWaaq WaaeaacaWG4baacaGLhWUaayjcSdaaaaGaayjkaiaawMcaaiaaiYca caaMf8UaamiEaiabgkziUkabg6HiLkaai6caaaaa@95E9@

Теорема доказана.

Теорема 5. Пусть u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  решение задачи Коши (1), удовлетворяющее для некоторых постоянных C>0,N,L0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeacaaI+a GaaGimaiaaiYcacaWGobGaaGilaiaadYeacqGHLjYScaaIWaaaaa@405F@  оценке

u x,t C t 1/2 + x N t L , x,t D T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDamaabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaaacaGL hWUaayjcSdGaeyizImQaam4qamaabmaabaGaamiDamaaCaaaleqaba GaaGymaiaai+cacaaIYaaaaOGaey4kaSYaaqWaaeaacaWG4baacaGL hWUaayjcSdaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGobaaaOGaam iDamaaCaaaleqabaGaeyOeI0IaamitaaaakiaaiYcacaaMf8+aaeWa aeaacaWG4bGaaGilaiaadshaaiaawIcacaGLPaaacqGHiiIZcaWGeb WaaSbaaSqaaiaadsfaaeqaaOGaaGilaaaa@5BC0@

и K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacqGHck cZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ri snaaCaaaleqabaGaamOBaaaaaaa@4729@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3796@  непустой выпуклый компакт. Тогда supp ψK, если и только если существуют постоянные C 1 >0, N 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeadaWgaa WcbaGaaGymaaqabaGccaaI+aGaaGimaiaaiYcacaaMe8UaamOtamaa BaaaleaacaaIXaaabeaakiabgwMiZkaaicdaaaa@4247@  такие, что

u(x,T) C 1 1+ x N 1 e 2 h K (x)|x | 2 4T ,x n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadsfacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qamaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGymai abgUcaRmaaemaabaGaamiEaaGaay5bSlaawIa7aaGaayjkaiaawMca amaaCaaaleqabaGaamOtamaaBaaabaGaaGymaaqabaaaaOGaamyzam aaCaaaleqabaWaaSaaaeaacaaIYaGaamiAamaaBaaabaGaam4saaqa baGaaGikaiaadIhacaaIPaGaeyOeI0IaaGiFaiaadIhacaaI8bWaaW baaeqabaGaaGOmaaaaaeaacaaI0aGaamivaaaaaaGccaaISaGaaGzb VlaadIhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD 3BaGqbaiab=1risnaaCaaaleqabaGaamOBaaaakiaai6caaaa@6B22@  (13)

Доказательство. Возводя равенство (12) в квадрат, получаем

d K 2 x = x 2 2 x h K x x + h K 2 x x +O 1 = = x 2 2 h K x +O 1 ,x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaGaamizam aaDaaaleaacaWGlbaabaGaaGOmaaaakmaabmaabaGaamiEaaGaayjk aiaawMcaaiaai2dadaabdaqaaiaadIhaaiaawEa7caGLiWoadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaIYaWaaqWaaeaacaWG4baacaGL hWUaayjcSdGaamiAamaaBaaaleaacaWGlbaabeaakmaabmaabaWaaS aaaeaacaWG4baabaWaaqWaaeaacaWG4baacaGLhWUaayjcSdaaaaGa ayjkaiaawMcaaiabgUcaRiaadIgadaqhaaWcbaGaam4saaqaaiaaik daaaGcdaqadaqaamaalaaabaGaamiEaaqaamaaemaabaGaamiEaaGa ay5bSlaawIa7aaaaaiaawIcacaGLPaaacqGHRaWkcaWGpbWaaeWaae aacaaIXaaacaGLOaGaayzkaaGaaGypaaqaaiabg2da9maaemaabaGa amiEaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabgkHiTi aaikdacaWGObWaaSbaaSqaaiaadUeaaeqaaOWaaeWaaeaacaWG4baa caGLOaGaayzkaaGaey4kaSIaam4tamaabmaabaGaaGymaaGaayjkai aawMcaaiaaiYcacaaMf8UaamiEaiabgkziUkabg6HiLkaai6caaaaa @789B@

Следовательно, существуют константы C 1 , C 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeadaWgaa WcbaGaaGymaaqabaGccaaISaGaam4qamaaBaaaleaacaaIYaaabeaa kiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfa Gae8xhHifaaa@48EA@  такие, что

x 2 2 h K x + C 1 d K 2 x x 2 2 h K x + C 2 ,x n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOabaiqabaWaaqWaae aacaWG4baacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGaeyOe I0IaaGOmaiaadIgadaWgaaWcbaGaam4saaqabaGcdaqadaqaaiaadI haaiaawIcacaGLPaaacqGHRaWkcaWGdbWaaSbaaSqaaiaaigdaaeqa aOGaeyizImQaamizamaaDaaaleaacaWGlbaabaGaaGOmaaaakmaabm aabaGaamiEaaGaayjkaiaawMcaaiabgsMiJcqaaiabgsMiJoaaemaa baGaamiEaaGaay5bSlaawIa7amaaCaaaleqabaGaaGOmaaaakiabgk HiTiaaikdacaWGObWaaSbaaSqaaiaadUeaaeqaaOWaaeWaaeaacaWG 4baacaGLOaGaayzkaaGaey4kaSIaam4qamaaBaaaleaacaaIYaaabe aakiaaiYcacaaMf8UaamiEaiabgIGioprr1ngBPrwtHrhAYaqeguuD JXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaWGUbaaaO GaaGilaaaaaa@6FDA@

и требуемое утверждение вытекает из теоремы 3.

Из (13) можно получить оценку на скорость убывания решения при x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIhacqGHsg IRcqGHEisPaaa@3CE0@  по направлениям:

lim ¯ r+ 1 r ln u rζ,T Γ rζ,T h K ζ 2T ,ζ S n1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaanaaabaGaae iBaiaabMgacaqGTbaaamaaBaaaleaacaWGYbGaeyOKH4Qaey4kaSIa eyOhIukabeaakmaalaaabaGaaGymaaqaaiaadkhaaaGaciiBaiaac6 gadaWcaaqaamaaemaabaGaamyDamaabmaabaGaamOCaiabeA7a6jaa iYcacaWGubaacaGLOaGaayzkaaaacaGLhWUaayjcSdaabaGaeu4KdC 0aaeWaaeaacaWGYbGaeqOTdONaaGilaiaadsfaaiaawIcacaGLPaaa aaGaeyizIm6aaSaaaeaacaWGObWaaSbaaSqaaiaadUeaaeqaaOWaae WaaeaacqaH2oGEaiaawIcacaGLPaaaaeaacaaIYaGaamivaaaacaaI SaGaaGzbVlabeA7a6jabgIGiolaadofadaahaaWcbeqaaiaad6gacq GHsislcaaIXaaaaOGaaGOlaaaa@681A@

Пусть в условиях теоремы 5 начальное распределение температуры ψ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5jqbgg Mi6AaawaGaaGimaaaa@3CF3@  неотрицательно, т.е. (φ,ψ)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaaiIcacqaHgp GAcaaISaGaeqiYdKNaaGykaiabgwMiZkaaicdaaaa@40AB@  для всех неотрицательных функций φ C 0 ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA8aQjabgI GiolaadoeadaqhaaWcbaGaaGimaaqaaiabg6HiLcaakiaaiIcatuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCa aaleqabaGaamOBaaaakiaaiMcaaaa@4C37@ . Тогда решение u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@  будет положительным при всех t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadshacaaI+a GaaGimaaaa@3B00@ . Поставим следующий вопрос. Пусть K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbvaqa aaaaaaaaWdbiaa=nbiaaa@3794@  выпуклая оболочка supp ψ. Верно ли, что

lim r+ 1 r ln u rζ,T Γ rζ,T = h K ζ 2T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaawafabeWcba GaamOCaiabgkziUkabgUcaRiabg6HiLcqabOqaaiGacYgacaGGPbGa aiyBaaaadaWcaaqaaiaaigdaaeaacaWGYbaaaiGacYgacaGGUbWaaS aaaeaacaWG1bWaaeWaaeaacaWGYbGaeqOTdONaaGilaiaadsfaaiaa wIcacaGLPaaaaeaacqqHtoWrdaqadaqaaiaadkhacqaH2oGEcaaISa GaamivaaGaayjkaiaawMcaaaaacaaI9aWaaSaaaeaacaWGObWaaSba aSqaaiaadUeaaeqaaOWaaeWaaeaacqaH2oGEaiaawIcacaGLPaaaae aacaaIYaGaamivaaaaaaa@5A65@

для всех ζ S n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA7a6jabgI GiolaadofadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaaa@3F66@ ? В этом случае формулу

h K ζ 2T r ln u rζ,T Γ rζ,T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadIgadaWgaa WcbaGaam4saaqabaGcdaqadaqaaiabeA7a6bGaayjkaiaawMcaaiab gIKi7oaalaaabaGaaGOmaiaadsfaaeaacaWGYbaaaiGacYgacaGGUb WaaSaaaeaacaWG1bWaaeWaaeaacaWGYbGaeqOTdONaaGilaiaadsfa aiaawIcacaGLPaaaaeaacqqHtoWrdaqadaqaaiaadkhacqaH2oGEca aISaGaamivaaGaayjkaiaawMcaaaaaaaa@51F9@

можно было бы использовать как отправную точку для численного нахождения множества K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeaaaa@3955@  по значениям температуры вне некоторого шара в момент времени T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadsfaaaa@395E@ .

Получим теперь условие на скорость убывания решения в гипотезе Ландиса–Олейник.

Теорема 6. Пусть функция u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@  является решением уравнения теплопроводности u t Δu=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhadaWgaa WcbaGaamiDaaqabaGccqGHsislcqqHuoarcaWG1bGaaGypaiaaicda aaa@3F7C@  в n ×(0,T] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGUbaaaOGaey41aqRaaGikaiaaicdacaaISaGaamivaiaai2faaa a@4A60@  и для некоторых постоянных C>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadoeacaaI+a GaaGimaaaa@3ACF@ , N0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaad6eacqGHLj YScaaIWaaaaa@3BD8@ ,

u x,t C 1+ x N , x,t D T . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDamaabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaaacaGL hWUaayjcSdGaeyizImQaam4qamaabmaabaGaaGymaiabgUcaRmaaem aabaGaamiEaaGaay5bSlaawIa7aaGaayjkaiaawMcaamaaCaaaleqa baGaamOtaaaakiaaiYcacaaMf8+aaeWaaeaacaWG4bGaaGilaiaads haaiaawIcacaGLPaaacqGHiiIZcaWGebWaaSbaaSqaaiaadsfaaeqa aOGaaGOlaaaa@562F@

Если

u(x,T) C 1 1+ x N 1 e |x | 2 4T ,x n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadsfacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qamaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGymai abgUcaRmaaemaabaGaamiEaaGaay5bSlaawIa7aaGaayjkaiaawMca amaaCaaaleqabaGaamOtamaaBaaabaGaaGymaaqabaaaaOGaamyzam aaCaaaleqabaGaeyOeI0YaaSaaaeaacaaI8bGaamiEaiaaiYhadaah aaqabeaacaaIYaaaaaqaaiaaisdacaWGubaaaaaakiaaiYcacaaMf8 UaamiEaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xhHi1aaWbaaSqabeaacaWGUbaaaOGaaGilaaaa@6624@  (14)

то u0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacqGHHj IUcaaIWaaaaa@3C02@  в D T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseadaWgaa WcbaGaamivaaqabaaaaa@3A53@ .

Доказательство. По теореме Мацузавы решение u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@  представляется в виде

u(x,t)=(Γ(x,t),ψ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaai2dacaaIOaGaeu4KdCKaaGik aiaadIhacqGHsislcqGHflY1caaISaGaamiDaiaaiMcacaaISaGaeq iYdKNaaGykaaaa@4AF0@

для некоторой функции ψ S ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5jabgI Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8Ne XpLbauaacaaIOaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39 gaiyaacqGFDeIudaahaaWcbeqaaiaad6gaaaGccaaIPaaaaa@5490@ . Так как x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam iEaaGaay5bSlaawIa7aaaa@3CA4@  является функцией расстояния для компакта из одной точки K={0} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadUeacaaI9a GaaG4EaiaaicdacaaI9baaaa@3CE2@ , то, по теореме 3, supp ψ{0}. Как известно, обобщенная функция с точечным носителем является конечной линейной комбинацией дельта-функции и ее производных:

ψ x = |k|m c k δ (k) x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeI8a5naabm aabaGaamiEaaGaayjkaiaawMcaaiaai2dadaaeqbqabSqaaiaaiYha caWGRbGaaGiFaiabgsMiJkaad2gaaeqaniabggHiLdGccaWGJbWaaS baaSqaaiaadUgaaeqaaOGaeqiTdq2aaWbaaSqabeaacaaIOaGaam4A aiaaiMcaaaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaaIUaaaaa@4EEE@

Следовательно, решение задачи (1) имеет вид

u x,t = |k|m c k x k Γ x,t . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhadaqada qaaiaadIhacaaISaGaamiDaaGaayjkaiaawMcaaiaai2dadaaeqbqa bSqaaiaaiYhacaWGRbGaaGiFaiabgsMiJkaad2gaaeqaniabggHiLd GccaWGJbWaaSbaaSqaaiaadUgaaeqaaOGaeyOaIy7aa0baaSqaaiaa dIhaaeaacaWGRbaaaOGaeu4KdC0aaeWaaeaacaWG4bGaaGilaiaads haaiaawIcacaGLPaaacaaIUaaaaa@5239@

Но единственная такая функция, ограниченная в некоторой окрестности начала координат, это u0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacqGHHj IUcaaIWaaaaa@3C02@ . Действительно, для всех функций φ C 0 ( n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabeA8aQjabgI GiolaadoeadaqhaaWcbaGaaGimaaqaaiabg6HiLcaakiaaiIcatuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCa aaleqabaGaamOBaaaakiaaiMcaaaa@4C37@  должно быть выполнено равенство

lim t0+ u ,t ,φ = |k|m 1 |k| c k x k φ 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaawafabeWcba GaamiDaiabgkziUkaaicdacqGHRaWkaeqakeaaciGGSbGaaiyAaiaa c2gaaaWaaeWaaeaacaWG1bWaaeWaaeaacqGHflY1caaISaGaamiDaa GaayjkaiaawMcaaiaaiYcacqaHgpGAaiaawIcacaGLPaaacaaI9aWa aabuaeqaleaacaaI8bGaam4AaiaaiYhacqGHKjYOcaWGTbaabeqdcq GHris5aOWaaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWba aSqabeaacaaI8bGaam4AaiaaiYhaaaGccaWGJbWaaSbaaSqaaiaadU gaaeqaaOGaeyOaIy7aa0baaSqaaiaadIhaaeaacaWGRbaaaOGaeqOX dO2aaeWaaeaacaaIWaaacaGLOaGaayzkaaGaaGilaaaa@641D@

что для ограниченной функции u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhaaaa@397F@  возможно только если все коэффициенты c k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadogadaWgaa WcbaGaam4Aaaqabaaaaa@3A89@  равны нулю.

Теорема доказана.

Константа 1 4T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaalaaabaGaaG ymaaqaaiaaisdacaWGubaaaaaa@3AE7@  в (14) является точной, как показывает следующий пример. Для любого ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiabew7aLjaai6 dacaaIWaaaaa@3BAE@  функция u(x,t)=Γ(x,t+ε) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadwhacaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaai2dacqqHtoWrcaaIOaGaamiE aiaaiYcacaWG0bGaey4kaSIaeqyTduMaaGykaaaa@4659@  является решением уравнения теплопроводности в слое D T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiaadseadaWgaa WcbaGaamivaaqabaaaaa@3A53@  и удовлетворяет оценке u(x,T) C e |x | 2 4(T+ε) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaamaaemaabaGaam yDaiaaiIcacaWG4bGaaGilaiaadsfacaaIPaaacaGLhWUaayjcSdGa eyizImQaam4qaiaadwgadaahaaWcbeqaaiabgkHiTmaalaaabaGaaG iFaiaadIhacaaI8bWaaWbaaeqabaGaaGOmaaaaaeaacaaI0aGaaiik aiaadsfacqGHRaWkcqaH1oqzcaGGPaaaaaaaaaa@4E83@ .

×

About the authors

A. N. Konenkov

Yesenin Ryazan State University

Author for correspondence.
Email: an.konenkov@gmail.com
Russian Federation, ul. Svobody, 46, Ryazan, 390000

References

  1. Прилепко А.И. Обратные задачи теории потенциала (эллиптические, параболические, гиперболические уравнения и уравнения переноса) // Матем. заметки. 1973. Т. 14. № 5. С. 755–767.
  2. Prilepko A.I., Orlovsky D.G., Vasin I. A. Methods for Solving Inverse Problems in Mathematical Physics. Marcel Dekker, N.Y., 2000. 750 p.
  3. Прилепко А.И., Костин А.Б., Соловьёв В.В. Обратные задачи нахождения источника и коэффициентов для эллиптических и параболических уравнений в пространствах Гёльдера и Соболева // Сиб. журнал чистой. и прикл. матем. 2017. Т. 17. № 3. С. 67–85.
  4. Ландис Е.М., Олейник О.А. Обобщенная аналитичность и некоторые связанные с ней свойства решений эллиптических и параболических уравнений // Успехи матем. наук. 1974. Т. 29. Вып. 2. С. 190–206.
  5. Wang W., Zhang L. Backward uniqueness of Kolmogorov operators // Methods Appl. Anal. 2013. V. 20. No. 1. P. 79–88.
  6. Escauriaza L., Kenig C.E., Ponce G., Vega L. Decay at infinity of caloric functions within characteristic hyperplanes // Math. Res. Lett. 2006. V. 13. No. 2–3. С. 441–453.
  7. Nguyen T. On a question of Landis and Oleinik // Trans. Amer. Math. Soc. 2010. V. 362. P. 2875–2899.
  8. Wu J., Zhang L. The Landis-Oleinik conjecture in the exterior domain // Adv. Math. 2016. V. 302. P. 190–230.
  9. Евграфов М.А. Аналитические функции. М.: Наука, 1991. 447 с.
  10. Matsuzawa Т. A calculus approach to hyperfunctions I // Nagoya Math. J. 1987. V. 108. P. 53—66.
  11. Matsuzawa Т. A calculus approach to hyperfunctions II // Trans. Amer. Math. Soc. 1989. V. 313. No. 2. P. 619–655.
  12. Matsuzawa T. A calculus approach to the hyperfunctions III // Nagoya Math. J. 1990. V.118. P. 133–153.
  13. Suwa M. A characterization of distributions of exponential growth with support in a regular closed set // Complex Var. Elliptic Equ. 2014. V. 59. No 10. P. 1418–1435.
  14. Suwa M., Yoshino K. A Characterization of Tempered Distributions with Support in a Cone by the Heat Kernel Method and its Applications // J. Math. Sci. UniV. Tokyo. 2004. V.11. P. 75–90.
  15. Chung S.-Y., Lee S.-M. The Paley-Wiener theorem by the heat kernel method // Bull. Korean Math. Soc. 1998. V. 35. No. 3. P. 441–453.
  16. Hörmander L. The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Springer Verlag, 1990. 440 p.
  17. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981. 512 с.
  18. Andrews B., Hopper C. The Ricci Flow in Riemannian Geometry: A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem. Lecture Notes in Mathematics. Vol. 2011. Springer, Heidelberg, 2010. 266 p.
  19. Schneider R. Convex Bodies: The Brunn–Minkowski Theory. Cambridge Univ. Press, Cambridge, 2013. 752 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».